Analysis of Self-Oscillation Processes in a Cavity with a Flow of OpenType on the Basis of the Data of Vortex-Resolving Calculations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanisms of self-oscillation processes occurring in cavities of open flow type are considered and substantiated on the basis of a detailed investigation of the phenomena of hydrodynamic, flow-rate, wave, and resonance nature. The theoretical conclusions are substantiated by an analysis of the data of numerical experiments performed by different authors.

About the authors

B. N. Dan’kov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: aduben@keldysh.ru
Moscov, Russia

A. P. Duben’

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: aduben@keldysh.ru
Moscov, Russia

T. K. Kozubskaya

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: aduben@keldysh.ru
Moscov, Russia

References

  1. Rossiter J.E., Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds // Aeronautical Research Council Reports & Memoranda. October 1964. № 3438.
  2. Heller H.H., Holmes D.G. and Covert E.E., Flow Induced Pressure Oscillations in Shallow Cavities // J. Sound Vib. 1971. V. 18. № 4. P. 545–553.
  3. Heller H.H. and Bliss D.B., The Physical Mechanism of Flow Induced Pressure Fluctuations in Cavities and Concepts for their Suppression // AIAA Paper 75–491. 1975.
  4. Block P.J.W., Noise response of cavity of varying dimensions at subsonic speeds // NASA TN D- 8351. 1976. P. 1–67.
  5. Tam C.K.W. and Block P.T.W., On the Tones and Pressure Oscillations Induced by Flow over Rectangular Cavities // J. Fluid Mech. 1978. V. 89. Part 2. P. 373–399.
  6. Hankey W.L. and Shang J.S., Analyses of Pressure Oscillations in an Open Cavity // AIAA J. 1980. V. 18. № 8. P. 892–898.
  7. Антонов А.Н., Вишняков А.Н., Шалаев С.П., Экспериментальное исследование пульсаций давления в выемке, обтекаемой дозвуковым или сверхзвуковым потоком газа // ПМТФ. 1981. № 2. С. 89–97.
  8. Абдрашитов Р.Г., Архиреева Е.Ю., Даньков Б.Н., Меньшов И.С., Северин А.В., Семенов И.В., Требунских Т.В., Чучкалов И.Б., Механизмы нестационарных процессов в протяженной каверне // Ученые записки ЦАГИ. 2012. Т. XLIII. № 4. С. 39–56.
  9. Даньков Б.Н., Дубень А.П., Козубская Т.К., Численное моделирование возникновения автоколебательного процесса возле трехмерного обратного уступа при трансзвуковом режиме обтекания // Изв. РАН. МЖГ. 2016. № 4. С. 108–119.
  10. Рокуэлл Д., Колебания сдвиговых слоев, взаимодействующих с препятствиями // Аэрокосмическая техника. 1984. Т. 2. № 2.
  11. Лебедев М.Г., Теленин Г.Ф. Взаимодействие сверхзвуковой струи с акустическим полем // Институт механики МГУ. Науч. тр. 1970. № 5. С. 88–107.
  12. Morkovin M.V. and Paranjape S.V., On Acoustic Excitation of Shear Layers // Zeitschrift für Flugwissenschaften.1971. V. 19. Heft 8/9. P. 328–335.
  13. Tam C.K.W. Excitation of Instability Waves in a Two-Dimensional Shear Layer by Sound // J. Fluid Mech. 1978. V. 89. Part 2. P. 357–371.
  14. Tam C.K.W. The Effects of Upstream Tones on the Large Scale Instability Waves and Noise of Jets // in Mechanics of Sound Generation in Flows, edited by E. Mueller. Springer-Verlag. New York. IUTAM. ICA, AIAA-Symposium. 1979. P. 41–47.
  15. Ahuja K., Mendoza J., Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes // NASA CR.1995. № 4653. P. 1–284.
  16. Blake W.K., Mechanics of flow-induced sound and vibration // General concepts and elementary sources. Academic Press, Inc. 1986. V. 1. Chap. 3. 1986. P. 130–149.
  17. Sarno R.L., Franke M.E., Suppression of Flow-Induced Pressure Oscillations in Cavities // J. Aircr. 1994. V. 31. № 1. P. 90–96.
  18. Rubio G., De Roeck W., Baelmans M., Desmet W., Numerical study of noise generation mechanisms in rectangular cavities // Europ. Colloqium 467: Turbulent Flow and Noise Generation. Marseille. France. 2005. P. 1–4.
  19. Keller J.J. and Escudier M.P., Periodic Flow Aspects of Throttles, Cavities, and Diffusers // Brown Boveri Research Center Rept. KCR-79-144B. Nov. 1979.
  20. Arunajatesan S., Shipman J.D., Sinha N. Mechanisms in high-frequency control of cavity flows // AIAA-2003-0005.
  21. Mendonca F., Richard A., de Charentenay J., Kirkham D., CFD Prediction of Narrowband and Broadband Cavity Acoustics at M = 0.85 // AIAA-2003-33303. 2003. P. 1–11.
  22. Larcheveque L., Sagaut P., Le T-H., Comte P., Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number // Fluid Mech. 2004. V. 516. P. 265–301.
  23. Nayyar P., Barakos G N. and Badcock K.J., Analysis and Control of Weapon Bay Flows // RTO-MP-AVT-123. 2005. P. 24-1–24-25.
  24. Arunajatesan S., Kannepalli C., Sinha N., Analysis of control concepts for cavity flows // AIAA-2006-2427.
  25. Plentovich E.B., Tracy M.B., Stallings R.L., Experimental cavity pressure measurements at subsonic and transonic speeds // NASA Technical Paper 3358. 1993.
  26. Ross J.A., Private Communications, QinetiQ, Bedford, MK41 6AE, UK.
  27. Ross J.A. and Peto J.W., The Effect of Cavity Shaping, Front Spoilers and Ceiling Bleed on Loads Acting on Stores, and on the Unsteady Environment Within Weapon Bays // Technical report. QinetiQ. March 1997.
  28. De Henshaw M.J.C., M219 cavity case: verification and validation data for computational unsteady aerodynamics // Tech. Rep. RTO-TR-26, AC/323. (AVT) TR/19. QinetiQ. UK. 2002. P. 453–472.
  29. Spalart P.R., Detached-Eddy Simulation // Annu. Rev. Fluid Mech. 2009. V. 41. P. 181–202.
  30. Shur M.L., Spalart P.R., Strelets M.Kh., Travin A.K., A hybrid RANS-LES approach with delayed-DES and wallmodeled LES capabilities // Intern. J. Heat and Fluid Flow. 2008. V. 29. № 6. P. 1638–1649.
  31. Bakhvalov P.A., Abalakin I.V., Kozubskaya T.K., Edge-based reconstruction schemes for unstructured tetrahedral meshes // Int. J. Numer. Methods Fluids. 2016. V. 81. № 6. P. 331–356.
  32. Bakhvalov P.A., Kozubskaya T.K. EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes // Comput. Fluids. 2018. V. 169. P. 98–11.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (824KB)
5.

Download (223KB)

Copyright (c) 2023 Б.Н. Даньков, А.П. Дубень, Т.К. Козубская

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies