Investigation of Heat Transfer Regimes in Subsonic Dissociated-Nitrogen Jets of a High-Frequency Induction Plasmatron under Additional Surface Heating by Laser Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The heat transfer to a cylindrical water-cooled copper model was experimentally investigated in an induction VGU-4 high-frequency (HF) plasmatron of the Institute for Problems in Mechanics of the Russian Academy of Sciences. The model, 30 mm in diameter, equipped with a calorimetric transducer with a heat-adsorbing graphite surface, 13.8 mm in diameter, was exposed to the surface heating in the combined regime by nitrogen plasma and laser radiation and in the cases of the heating with only laser radiation or a nitrogen plasma jet. The experiments in the HF-plasmatron jets were performed at the pressure in the setup low-pressure chamber p = 1 × 104 Pa, nitrogen mass flow rate G = 2.4 g/s, and the plasmatron HF-generator anode power Na.p. = 22 kW. It is established that in the chosen experimental regimes the dissociated-nitrogen jet and the high-frequency induction discharge do not produce a considerable effect on the laser beam passing through them. The values of the heat flux density are obtained as functions of the laser radiation power delivered. The subsonic nitrogen plasma flow in the quartz discharge channel and in the low-pressure chamber of the VGU-4 setup is numerically modeled under the experimental conditions basing on the solution of the complete Navier–Stokes equations using the Patankar–Spalding method.

About the authors

S. A. Vasil’evskii

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

S. S. Galkin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

A. F. Kolesnikov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

M. A. Kotov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

I, V. Lukomskii

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

N. G. Solovyev

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

E. S. Tepteeva

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

A. V. Chaplygin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

A. N. Shemyakin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

M. Yu. Yakimov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: chaplygin@ipmnet.ru
Moscow, Russia

References

  1. Park C. Calculation of stagnation-point heating rates associated with stardust vehicle // J. Spacecr. Rockets. 2007. V. 44. № 1. P. 24–32. https://doi.org/10.2514/1.15745
  2. Dikalyuk A., Kozlov P., Romanenko Y., Shatalov O., Surzhikov S. Nonequilibrium Spectral Radiation Behind the Shock Waves in Martian and Earth Atmospheres // 44th AIAA Thermophysics Conf. Reston, Virginia. 2013. P. 1–27. https://doi.org/10.2514/6.2013-2505
  3. Surzhikov S.T. Radiative-Collisional Models in Non-Equilibrium Aerothermodynamics of Entry Probes // J. Heat Transfer. 2012. V. 134. № 3. P. 1–11. https://doi.org/10.1115/1.4005127
  4. Суржиков С.Т., Яцухно Д.С. Анализ летных данных по конвективному и радиационному нагреву поверхности спускаемого марсианского космического аппарата Schiaparelli // Изв. РАН. МЖГ. 2022. № 6. С. 74–85. https://doi.org/10.31857/S0568528122600394
  5. Venkatapathy E., Ellerby D., Gage P., Prabhu D., Gasch M., Kazemba C., Kellerman C., Langston S., Libben B., Mahzari M., Milos F., Murphy A., Nishioka O., Peterson K., Poteet C., Splinter S., Stackpoole M., Williams J., Young Z. Entry system technology readiness for ice-giant probe missions // Space Sci. Rev. 2020. V. 216. № 2. P. 1–21. https://doi.org/10.1007/s11214-020-0638-2
  6. Laub B., Venkatapathy E. Thermal protection system technology and facility needs for demanding future planetary missions // Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. ESA Publications Division. 2004. V. 544. P. 239–247.
  7. Venkatapathy E., Laub B., Hartman G.J., Arnold J.O., Wright M.J., Allen Jr G.A. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions: Examples for Saturn, Titan and Stardust-type sample return // Adv. Sp. Res. 2009. V. 44. № 1. P. 138–150. https://doi.org/10.1016/j.asr.2008.12.023
  8. Cushman G., Alunni A., Balboni J., Zell P., Hartman J., Empey D. The Laser Enhanced Arc-Jet Facility (LEAF-Lite): Simulating Convective and Radiative Heating with Arc-jets and Multiple 50-kW CW Lasers // Joint Thermophysics and Heat Transfer Conf. 2018. P. 3273. https://doi.org/10.2514/6.2018-3273
  9. Gokcen T., Alunni A. CFD Simulations of the IHF Arc-Jet Flow: 9-Inch Nozzle, Flow Surveys, LEAF Wedge Calibration Data // AIAA Aviation Forum. 2019. P. 3008. https://doi.org/10.2514/6.2019-3008
  10. Alunni A.I., Gokcen T., Boghozian T. Laser-Enhanced Arc-Jet Facility Wedge Tests: Avcoat Material Performance Under Convective and Radiative Heating Environments // Joint Thermophysics and Heat Transfer Conf. 2019. № ARC-E-DAA-TN62912.
  11. Chaplygin A., Kotov M., Yakimov M., Lukomskii I., Galkin S., Kolesnikov A., Shemyakin A., Solovyov N. Combined Surface Heating by Laser Beam and Subsonic Nitrogen Plasma Jet // Fluids. 2023. 8 (1): 11. https://doi.org/10.3390/fluids8010011
  12. Колесников А.Ф., Гордеев А.Н. Высокочастотные индукционные плазмотроны серии ВГУ // Актуальные проблемы механики: Физико-химическая механика жидкостей и газов. М.: Наука, 2010. С. 151–177.
  13. ASTM E422-05(2016). Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter // ASTM International, West Conshohocken, PA. 2016.
  14. Bottin B., Chazot O., Carbonaro M., Van Der Haegen V., Paris S. The VKI plasmatron characteristics and performance: tech. rep. Von Karman Institute For Fluid Dynamics. Rhode-Saint-Genese (Belgium). 2000. 27 p.
  15. Touloukian Y.S., DeWitt D.P. Thermophysical properties of matter. Purdue Univ. 1972. V. 8. P. 1890.
  16. Васильевский С.А., Колесников А.Ф. Численное исследование течений и теплообмена в индукционной плазме высокочастотного плазмотрона // Энциклопедия низкотемпературной плазмы. Серия Б. 2008. Т. 1, Ч. 2. С. 220–234.
  17. Patankar S.V. Numerical Heat Transfer and Fluid Flow. CRC Press, 2018. 214 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (522KB)
3.

Download (36KB)
4.

Download (32KB)
5.

Download (293KB)
6.

Download (153KB)
7.

Download (176KB)
8.

Download (159KB)

Copyright (c) 2023 С.А. Васильевский, С.С. Галкин, А.Ф. Колесников, М.А. Котов, И.В. Лукомский, Н.Г. Соловьев, Е.С. Тептеева, А.В. Чаплыгин, А.Н. Шемякин, М.Ю. Якимов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies