Reconstruction of Three-Dimensional Structures of Electrohydrodynamic Flows Induced by Blade-Plane Geometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Particle image velocimetry (PIV) method has emerged as a powerful technique for electrohydrodynamic (EHD) flow field measurements. Based on a series of parallel field measurements along the blade electrode, we reconstruct the three-dimensional (3D) structure of EHD flows produced by an actuator in the blade-plane geometry. A non-uniform distribution of injection intensity and velocity is observed along the electrode. With the aid of slice plots from different views of 3D Cartesian, it is understood that the applied voltage, electrode spacing and the electrode surface or tip roughness exert a remarkable effect upon the structure of EHD jets. The findings of this investigation will complement the full view of the 3D structure of the jet and be of broad use to guide the selection of appropriate positions along the blade for profile plane studies.

About the authors

Z. Yan

College of Information Science and Technology, Donghua University; Logistics Engineering College, Shanghai Maritime University

Email: zlyan@shmtu.edu.cn
China, Shanghai; China, Shanghai

C. Louste

Institut PPRIME, Université de Poitiers, Futuroscope Chasseneuil

Email: christophe.louste@univ-poitiers.fr
France, Futuroscope Chasseneuil

J. Fang

College of Information Science and Technology, Donghua University

Email: jafang@dhu.edu.cn
China, Shanghai

W. Wu

Ningbo Weiji Electronics Co.Ltd

Author for correspondence.
Email: wwz@zjweiji.com
China, Ningbo

References

  1. Vázquez P.A., Talmor M., Seyed-Yagoobi J., Traoré P., Yazdani M. In-depth description of electrohydrodynamic conduction pumping of dielectric liquids: Physical model and regime analysis // Phys. Fluids. 2019. V. 31. № 11. P. 113601–113615.
  2. Vasilkov S.A., Chirkov V.A., Stishkov Yu.K. Electrohydrodynamic flow caused by field-enhanced dissociation solely // Phys. Fluids. 2017. V. 29. № 6. P. 063601–063607.
  3. Ситников А.А., Стишков Ю.К. Трехионная модель ЭГД-течений в системе электродов “провод над плоскостью” // Изв. РАН. МЖГ. 2017. № 2. С. 3–10.
  4. Григорьев А.И., Михеев Г.Е., Ширяева С.О. Электростатическая неустойчивость поверхности объемно заряженной струи диэлектрической жидкости, движущейся относительно материальной среды // Изв. РАН. МЖГ. 2017. № 5. С. 3–14.
  5. Yang L., Talmor M., Shaw B.C., Minchev K.S., Jiang C., Seyed-Yagoobi J. Flow distribution control in meso scale via electrohydrodynamic conduction pumping // IEEE Trans. Ind. Appl. 2017. V. 53. № 2. P. 1431–1438.
  6. Wang Q., Guan Y., Huang J., Wu J. Chaotic electro-convection flow states of a dielectric liquid between two parallel electrodes // Eur. J. Mech. B-fluid. 2021. V. 89. P. 332–348.
  7. John G., Liu P.L.F., Pedersen G.K. PIV and Water Waves. Singapore: World Scientific, 2000.
  8. Daaboul M., Louste C., Romat H. PIV measurements on charged plumes-influence of SiO2 seeding particles on the electrical behavior // IEEE Trans. Dielectr. Electr. Insul. 2009. V. 16. № 2. P. 335–342.
  9. Afanasyev S., Lavrenyuk D., Nikolaev P., Stishkov Yu. A semiautomatic method for computer processing of the velocity profile in EHD flows // Surf. Engin. Appl. Electrochem. 2007. V. 43. P. 18–23.
  10. Yan Z., Louste C., Traoré P., Romat H. Velocity and turbulence intensity of an EHD impinging dielectric liquid jet in blade–plane geometry // IEEE Trans. Ind. Appl. 2013. V. 49. № 5. P. 2314–2322.
  11. Wu J., Traoré P., Louste C., Pérez A.T., Vázquez P.A. Heat transfer enhancement by an electrohydrodynamic plume induced by ion injection from a hyperbolic blade, in: IEEE 18th International Conference on Dielectric Liquids. June 30-July 3. 2014. Bled. P. 1–4.
  12. Жакин А.И., Кузько А.Е. Электрогидродинамические течения и теплообмен в системе электродов лезвие-плоскость // Изв. РАН. МЖГ. 2013. № 3. С. 31–42.
  13. Vázquez P.A., Pérez A.T., Castellanos A. Thermal and electrohydrodynamic plumes. A comparative study // Phys. Fluids. 1996. V. 8. № 8. P. 2091–2096.
  14. Deo R., Mi J., Nathan G. The influence of nozzle aspect ratio on plane jets // Exp. Therm. Fluid Sci. 2007. V. 31. P. 825–838.
  15. Sha Y., Zhou Y., Nie D., Wu Z., Deng J. A study on electric conduction of transformer oil // IEEE Trans. Dielectr. Electr. Insul. 2014. V. 21. № 3. P. 1061–1069.
  16. Абрамович Г.Н. Теория турбулентных струй. М.: Физматгиз, 1960.
  17. Yan Z., Louste C., Traoré P., Romat H. Experimental estimation of the electric force induced by a blade-plane actuator in dielectric liquids // J. Electrostat. 2013. V. 71. P. 478–483.
  18. Drosg M. Dealing with Uncertainties: A Guide to Error Analysis. Wien: Springer-Verlag Berlin Heidelberg, 2007.
  19. Castellanos A. Electrohydrodynamics. New York: Springer-Verlag, 1998.
  20. Bockris J.O.M., Reddy K.N., Gamboa-Aldeco M. Modern Electrochemistry 2A Fundamentals of Electrodics/ Second Ed. New York: Springer, 2000.
  21. Pletcher D. Electrochemistry, Vol. 8: A Review of Chemical Literature. London: Burlington House, 1983.
  22. Bockris J., Conway B., Yeager E. Comprehensive Treatise of Electrochemistry: The Double Layer. New York: Springer, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (393KB)
3.

Download (768KB)
4.

Download (461KB)
5.

Download (192KB)
6.

Download (310KB)
7.

Download (87KB)
8.

Download (71KB)
9.

Download (1022KB)
10.

Download (993KB)
11.

Download (916KB)
12.

Download (811KB)

Copyright (c) 2023 Z. Yan, C. Louste, J. Fang, W. Wu

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies