ФОРМИРОВАНИЕ УДАРНО-ВОЛНОВОГО ТЕЧЕНИЯ ПРИ ЛОКАЛИЗАЦИИ НАНОСЕКУНДНЫХ РАЗРЯДОВ В НЕСТАЦИОНАРНОМ ПОТОКЕ В КАНАЛЕ С ПРЕПЯТСТВИЕМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты исследований по воздействию импульсного объемного и поверхностного разрядов на высокоскоростное течение газа в прямоугольном канале ударной трубы с изменением профиля (препятствием на нижней стенке). Однократный наносекундный поверхностный разряд и разряд с предыонизацией от плазменных электродов (комбинированный разряд) инициировался в потоке за ударной волной с числами Маха Мs 3.2–3.4. Препятствие определяет распределение параметров обтекающего его потока и перераспределение плазмы импульсного разряда. Численным моделированием получены поля плотности газодинамического потока в условиях эксперимента и проведено сравнение с распределением плазмы разряда. Показано, что ударно-волновое воздействие разряда на поток за препятствием продолжалось от 25 до 70 мкс.

Об авторах

Д. И. Долбня

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Email: tatarenkova.darya@yandex.ru
Россия, Москва

И. А. Знаменская

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Email: tatarenkova.darya@yandex.ru
Россия, Москва

А. Е. Луцкий

Институт прикладной математики им. М.В. Келдыша РАН

Email: tatarenkova.darya@yandex.ru
Россия, Москва

Н. Н. Сысоев

Московский государственный университет им. М.В. Ломоносова, Физический факультет

Автор, ответственный за переписку.
Email: tatarenkova.darya@yandex.ru
Россия, Москва

Список литературы

  1. Стариковский А.Ю., Александров Н.Л. Управление газодинамическими потоками с помощью сверхбыстрого локального нагрева в сильнонеравновесной импульсной плазме // Физика плазмы. 2021. Т. 47. № 2. С. 126–192. https://doi.org/10.31857/S0367292121020062
  2. Wang J.-J., Choi K.-S., Feng L.-H., Jukes T.N., Whalley R.D. Recent developments in DBD plasma flow control // Progress in Aerospace Sciences. 2013. V. 62. P. 52–78. https://doi.org/10.1016/J.PAEROSCI.2013.05.003
  3. Kotsonis M. Diagnostics for characterisation of plasma actuators // Meas. Sci. Technol. 2015. V. 26. № 9. P. 092001. https://doi.org/10.1088/0957-0233/26/9/092001
  4. Суржиков С.Т. Гиперзвуковое обтекание острой пластины и двойного клина с электромагнитным актюатором // Изв. РАН. МЖГ. 2020. Т. 6. С. 106–120. https://doi.org/10.31857/S0568528120060110
  5. Bayoda K.D., Benard N., Moreau E. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics // Journal of Applied Physics. 2015. V. 118. № 6. P. 063301. https://doi.org/10.1063/1.4927844
  6. Leonov S.B., Kochetov I.V., Napartovich A.P., Sabel V.A., Yarantsev D.A. Plasmainduced ethylene ignition and flameholding in confined supersonic air flow at low temperatures // IEEE Trans Plasma Sci. 2011. V. 39. № 2. P. 781–787. https://doi.org/10.1109/TPS.2010.2091512
  7. Feng R., Li J., Wu Y., Zhu J., Song X., Li X. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor // Aerospace Science and Technology. 2018. V. 79. P. 145–153. https://doi.org/10.1016/J.AST.2018.05.036
  8. Znamenskaya I.A., Dolbnya D.I., Ivanov I.E., Kuli-zade T.A., Sysoev N.N. Pulse volume discharge behind shock wave in channel flow with obstacle // Acta Astronautica. 2022. V. 195. P. 493–501. https://doi.org/10.1016/j.actaastro.2022.03.031
  9. Знаменская И.А. Методы панорамной визуализации и цифрового анализа теплофизических полей. Обзор // Научная визуализация. 2021. Т. 13. № 3. С. 125–158. https://doi.org/10.26583/sv.13.3.13
  10. Znamenskaya I.A., Koroteeva E.Y., Timokhin M.Y. Kuli-zade T.A., Tatarenkova D.I. Experimental investigation of the flow dynamics and boundary layer in a shock tube with discharge section based on digital panoramic methods // AIP Conference Proceedings. 2018. V. 2027. P. 030161.
  11. Borisov V.E., Chetverushkin B.N., Davydov A.A., Khankhasaeva Ya.V., Lutskii A.E. Heat flux in supersonic flow past ballistic model at various angles of attack and wall temperatures // Acta Astronautica. 2021. V. 183. P. 52–58.
  12. Cheeda V.K., Kumar A., Ramamurthi K. Influence of shear layers on the structure of shocks formed by rectangular and parabolic blockages placed in a subsonic flow-field, // Shock Waves. 2013. V.24. № 2. P. 157–169. https://doi.org/10.1007/s00193-013-0476-1
  13. Bedarev I.A., Goldfeld M.A., Zakharova Yu.V., Fedorova N.N. Investigation of temperature fields in supersonic flow behind a backward-facing step // Thermophysics and Aeromechanics. 2009. V. 16. № 3. P. 355–366. https://doi.org/10.1134/S0869864309030044

Дополнительные файлы


© Д.И. Долбня, И.А. Знаменская, А.Е. Луцкий, Н.Н. Сысоев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».