Motion of a Piston Separating Magnetic and Non-Magnetic Fluids in a Magnetic Field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pumping of non-magnetic fluid by a dosing pump that is based on a magnetic fluid with an immersed body made of a magnetizable material is studied theoretically and experimentally. The process of fluid pumping in an applied vertical uniform magnetic field is investigated. The time dependences of the rise of the piston between the magnetic and non-magnetic fluids are calculated and measured in constant and stepwise magnetic fields. A good agreement between theory and experiment is obtained. The dependence of the rise time of the piston on the magnitude of the constant magnetic field is calculated. The motion of piston is theoretically investigated after the magnetic field is switched off.

About the authors

U. V. Volkova

Moscow State University

Email: lvioolnk@mail.ru
Moscow, Russia

D. I. Merkulov

Moscow State University

Email: lvioolnk@mail.ru
Moscow, Russia

S. A. Kalmykov

Moscow State University

Email: lvioolnk@mail.ru
Moscow, Russia

D. A. Pelevina

Moscow State University

Email: lvioolnk@mail.ru
Moscow, Russia

V. A. Naletova

Moscow State University

Author for correspondence.
Email: lvioolnk@mail.ru
Moscow, Russia

References

  1. Neuringer J.L., Rosensweig R.E. Ferrohydrodynamics // The Physics of Fluids. 1964. V. 7. № 12. P. 1927–1937.
  2. Розенцвейг Р. Феррогидродинамика. Пер. с англ. М.: Мир, 1989. С. 357.
  3. Гогосов В.В., Налетова В.А., Шапошникова Г.А. Гидродинамика намагничивающихся жидкостей // Итоги науки и техники. Механика жидкости и газа. 1981. Т. 16. С. 76–208.
  4. Налетова В.А. Лекции по феррогидродинамике. М.: Изд-во ЦПИ при механико-математическом факультете МГУ, 2005. С. 152.
  5. Кирюшин В.В., Параскевопуло О.Р. Форма поверхности капли магнитной жидкости вблизи острия магнитного клина // Изв. РАН. МЖГ. 1992. № 4. С. 113–117.
  6. Пелевина Д.А. Форма свободной поверхности магнитной жидкости с цилиндрическим концентратором магнитного поля // Изв. РАН. МЖГ. 2016. № 6. С. 15–24.
  7. Тятюшкин А.Н. Течение тонкого слоя намагничивающейся жидкости в магнитном поле. // Известия РАН. МЖГ. 2019. № 4. С. 27–32.
  8. Тятюшкин А.Н. Деформация капли невязкой намагничивающейся жидкости в нестационарном магнитном поле // Изв. РАН. МЖГ. 2021. № 5. С. 138–150.
  9. Park G.S., Park S.H. Design of magnetic fluid linear pump // IEEE Trans. Magn. 1999. V. 35. № 5. P. 4058–4060.
  10. Park G.S., Park S.H. New structure of the magnetic fluid linear pump // IEEE Trans. Magn. 2000. V. 36. № 5. P. 370–3711.
  11. Park G.S., Kang S. New Design of the magnetic fluid linear pump to reduce the discontinuities of the pumping forces // IEEE Trans. Magn. 2004. V. 40. № 2. P. 916–919.
  12. Zhao M., Zou J.B., Xu Y.X., Zhao B., Li Y. Investigation of spin travelling wave pump on magnetic fluid // Materials Research Innovations. 2015. V. 19. № 5. P. 429–432.
  13. Zhao Meng, Zou Jibin, Hu Jianhui, Xu Yongxiang. Analysis of driving capacity on traveling wave pump of magnetic fluid // Abstract Book of 12th International Conference on Magnetic Fluids (ICMF12), Sendai. 2010. P. 138–139.
  14. Ido Y., Tanaka K., Sigiura Y. Fluid transportation mechanisms by a coupled system of elastic membranes and magnetic fluid // Journal of Magnetism and Magnetic Materials. 2002. V. 252. P. 344–346.
  15. Калмыков С.А., Налетова В.А., Пелевина Д.А., Турков В.А. Двухслойное течение намагничивающихся жидкостей // Изв. РАН. МЖГ. 2013. № 5. С. 3–13.
  16. Greivell N.E., Hannaford B. The Design of a Ferrofluid Magnetic Pipette // Transactions on Biomedical Engineering. 1997. V. 44. № 3. P. 129–135.
  17. Yamahata C., Chastellain M., Parashar V.K., Petri A., Hofmann H., Gijs M.A.M. Plastic micropump with ferrofluidic actuation // Journal of Microelectromechanical Systems. 2005. V. 14. № 1. P. 96–102.
  18. Das K., Sarkar M., Mukhopadhyay A., Ganguly R. Transient response of a ferrofluid plug-driven micropump // Magnetohydrodynamics. 2013. V. 49. № 3/4. P. 499–504.
  19. Ando B., Ascia A., Baglio S., Pitrone N. Ferrofluidic pumps: A valuable implementation without moving parts // IEEE Transactions on Instrumentation and Measurement. 2009. V. 58. № 9. P. 3232–3237.
  20. Andò B., Ascia A., Baglio S., Pitrone N. Magnetic Fluids and Their Use in Transducers // IEEE Instrumentation & Measurement Magazine. 2006. V. 9. № 6. P. 44–47.
  21. Hartshorne H., Backhouse C.J., Lee W.E. Ferrofluid-based microchip pump and valve // Sensors and Actuators. 2004. V. 99. № 2–3. P. 592–600.
  22. Hatch A., Kamholz A.E., Holman G., Yager P., Böhringer K.F. A Ferrofluidic Magnetic Micropump // Journal of microelectromechanical systems. 2001. V. 10. № 2. P. 215–221.
  23. Ashouri M., Shafii M.B., Moosavi A., Hezave H.A. A novel revolving piston minipump // Sensors and Actuators. 2015. V. 218. P. 237–244.
  24. Liu B., Zhang Z., Yang J.,Yang J., Li D. A rotary ferrofluidic vane micropump with C shape baffle // Sensors and Actuators. 2018. V. 263. P. 452–458.
  25. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992. С. 632.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (140KB)
3.

Download (698KB)
4.

Download (86KB)
5.

Download (46KB)
6.

Download (126KB)
7.

Download (53KB)
8.

Download (69KB)
9.

Download (72KB)

Copyright (c) 2023 У.В. Волкова, Д.И. Меркулов, С.А. Калмыков, Д.А. Пелевина, В.А. Налетова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies