Interaction of the supersonic stellar wind with the incoming flow of the interstellar medium: the influence of the azimuthal magnetic field of the star

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of the interaction of a hypersonic stellar wind with the surrounding interstellar medium is considered. The media are regarded as fully ionized and are accounted for within the framework of ideal magnetohydrodynamics. The scientific novelty consists in taking into account the magnetic field of a star. The magnetic field qualitatively changes the shape of the astropause under certain parameters. Astropause is a tangential gap that separates the stellar wind from the interstellar medium. Instead of the classical paraboloidal shape, astropause acquires a tube (or cylindrical) shape. It was demonstrated that the tube shape takes place for slowly moving stars or, in the star's coordinate system, for incoming streams with the Mach number ($M_\infty$) less than the critical one. When a critical Mach number ($M_\infty^*$) is reached, the flow regime bifurcates, and the astropause shape changes from tube to classical. For stars with a strong magnetic field, bifurcation occurs at higher Mach numbers than for stars with a weak magnetic field. It is also shown that one more qualitative restructuring of the flow occurs at $M_\infty = 1$. In this case, the shape of the astropause does not change, but a bow shock and a Mach disk are formed.

About the authors

S. D. KOROLKOV

Space Research Institute

Email: korolkov.msu@mail.ru
Moscow, Russia

V. V. IZMODENOV

Space Research Institute

Author for correspondence.
Email: izmod@iki.rssi.ru
Moscow, Russia

References

  1. Parker E.N. The Stellar-Wind Regions // Astrophys. J. 531. 1963. https://doi.org/10.1086/147124
  2. Баранов В.Б., Краснобаев К.В., Куликовский А.Г. Модель взаимодействия солнечного ветра с межзвездной средой // Доклады Академии наук СССР. 1970. № 194. С. 41–44.
  3. Баранов В.Б., Лебедев М.Г., Рудерман М.С. Структура области взаимодействия солнечного ветра с межзвездной средой и ее влияние на проникновение атомов Н в солнечный ветер // Astrophys Space Sci. 1979. С. 429–440. https://doi.org/10.1007/BF00650015
  4. Baranov V.M., Malama Iu.G. Model of the solar wind interaction with the local interstellar medium numerical solution of self-consistent problem // JGR. 1993. https://doi.org/10.1029/93JA01171
  5. Bertaux J.L., Blamont J.E. Evidence for a source of an extraterrestrial hydrogen lyman-alpha emission // AAP. 1971. № 11. C. 20.
  6. Thomas G.E., Krassa R.F. OGO 5 Measurements of the Lyman Alpha Sky Background // AAP. 1971. № 11. C. 218.
  7. Wallis M.K. Local interstellar medium // Nature. 1975. №254. C. 202–203.
  8. Баранов В.Б., Рудерман М.С. Взаимодействие солнечного ветра с заряженными и нейтральными компонентами межзвездной среды // Письма в Астрономический журнал. 1979. № 5. С. 615–619.
  9. Баранов В.Б., Ермаков М.К., Лебедев М.Г. Трехкомпонентная газодинамическая модель взаимодействия солнечного ветра с межзвездной средой // Известия Академии наук СССР. Механика жидкости и газа. 1981. № 5. С. 123.
  10. Baranov V.B., Ermakov M.K., Lebedev M.G. Three-component gas-dynamic model of the interaction of the solar wind with the interstellar medium // Fluid Dynamics. 1982. № 17. C. 754–759.
  11. Baranov V.B., Lebedev M.G., Malama Y.G. The influence of the interface between the heliosphere and the local interstellar medium on the penetration of the H atoms to the Solar system // Astrophysical Journal. 1991. T. 375. № 3. C. 347–351. https://doi.org/10.1086/170194
  12. Baranov V.B., Izmodenov V.V. Model Representations of the interaction between the solar wind and the supersonic interstellar medium flow. Prediction and interpretation of experimental data // Fluid Dynamics. 2006. T. 41. № 5. C. 689–707. https://doi.org/10.1007/s10697-006-0089-9
  13. Baranov V.B., Zaitsev N.A. On the problem of the solar wind interaction with magnetized interstellar plasma // Astronomy and Astrophysics. 1995. № 304. C. 631.
  14. Pogorelov N., Matsuda T. Application of numerical methods to modeling the stellar wind and interstellar medium interaction // 1998/ eprint arXiv:physics/9807031.
  15. Linde T.J., Gombosi T.I., Roe P.L., Powell K.G., Dezeeuw D.L. Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation // Journal of Geophysical Research. 1998. № 103. C. 1889–1904. https://doi.org/10.1029/97JA02144
  16. Alexashov D.B., Izmodenov V.V. Kinetic vs. multi-fluid models of H atoms in the heliospheric interface: a comparison // Astronomy and Astrophysics. 2005. № 439. C. 11171–1181. https://doi.org/10.1051/0004-6361:20052821
  17. Yu G. The interstellar wake of the solar wind // Astrophysical Journal. 1974. № 194. C. 187–202. https://doi.org/10.1086/153235
  18. Opher M., Drake J.F., Zieger B., Zieger M., Gombosi T.I. Magnetized Jets Driven by the Sun: The Structure of the Heliosphere Revisited // Astrophysical Journal Letter. 2015. № 800. https://doi.org/10.1088/2041-8205/800/2/L28
  19. Drake J.F., Swisdak M., Opher M. A Model of the Heliosphere with Jets // Astrophysical Journal. 2015. https://doi.org/2015AGUFMSH53C.02D
  20. Izmodenov V.V., Alexashov D.B. Three-dimensional kinetic-MHD model of the global heliosphere with the heliopause-surface fitting // Astrophysical Journal, Supplement Series. 2015. https://doi.org/10.1088/0067-0049/220/2/32
  21. Izmodenov V.V., Alexashov D.B. Magnitude and direction of the local interstellar magnetic field inferred from Voyager 1 and 2 interstellar data and global heliospheric model // Astronomy and Astrophysics. 2020. https://doi.org/10.1051/0004-6361/201937058
  22. Pogorelov N.V., Borovikov S.N., Heerikhuisen J., Zhang M. The Heliotail // Astrophysical Journal. 2015. https://doi.org/10.1088/2041-8205/812/1/L6
  23. Pogorelov N.V., Fichtner H., Czechowski A., Lazarian A., Lembege B., le Roux J.A., Potgieter M.S., Scherer K., Stone E.C., Strauss R.D., Wiengarten T., Wurz P., Zank G.P., Zhang M. Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields // Space Science Reviews. 2017. https://doi.org/10.1007/s11214-017-0354-8
  24. Parker E.N. Dynamics of the Interplanetary Gas and Magnetic Fields // Astrophysical Journal. 1958. V. 128. P. 664. https://doi.org/10.1086/146579
  25. Golikov E.A., Izmodenov V.V., Alexashov D.B., Belov N.A. Two-jet astrosphere model: effect of azimuthal magnetic field // Monthly Notices of the Royal Astronomical Society. 2017. https://doi.org/10.1093/mnras/stw2402
  26. Golikov E.A., Izmodenov V.V., Alexashov D.B. Two-jet structure of the ow produced by magnetized hypersonic spherical source into the steady unmagnetized medium// Journal of Physics: Conference Series. 2017. https://doi.org/10.1088/1742-6596/815/1/012035
  27. Korolkov S.D., Izmodenov V.V., Alexashov D.B. Numerical modeling of the convective Kelvin-Helmholtz instabilities of astropauses // Journal of Physics: Conference Series. 2020. https://doi.org/10.1088/1742-6596/1640/1/012012
  28. Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
  29. Gurski K.F. An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics // SIAM J. Sci. Comput. 2004. V. 2165. P. 25.
  30. Powell K.G., Roe P.L., Linde T.J., Gombosi T.I., Zeeuw D.L. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics // Journal of Computational Physics. 1999. https://doi.org/10.1006/jcph.1999.6299
  31. Osher Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2003. https://doi.org/10.1007/b98879
  32. Korolkov S.D., Izmodenov V.V. New unexpected flow patterns in the problem of the stellar wind interaction with the interstellar medium: stationary ideal-MHD solutions // Monthly Notices of the Royal Astronomical Society. 2021.https://doi.org/10.1093/mnras/stab1071

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (125KB)
3.

Download (1MB)
4.

Download (99KB)
5.

Download (64KB)

Copyright (c) 2023 С.Д. Корольков, В.В. Измоденов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies