Gas Dynamic Models of the Interaction between the Solar Wind

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gas dynamic models of the interaction between the solar wind and cometary atmospheres
are considered. Interest in the development of such models arose sharply after the beginning of the investigations of comets with the use of spacecraft launched at distances close to their surfaces. The instruments on this spacecraft gave the possibility to investigate experimentally the parameters of gas flow out from the cometary surfaces when the comets approach the Sun and its interaction with the solar wind plasma flow, which could not be made using only the spectral photometry. The beginning of such studies was started by almost instantaneous approaching of several space probes to Halley’s Comet on March 1986. Only after 28 years, the Rosetta spacecraft launched by the European Space Agency (ESA) along a complex trajectory have approached comet Churyumov–Gerasimenko and, maneuvering in the neighborhood of this comet during more than two years, it, in particular, have investigated the interaction of the cometary atmosphere and the solar wind

About the authors

V. B. BARANOV

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: baranov@ipmnet.ru
Moscow, Russia

References

  1. Biermann L., Brosowski B., Schmidt H.U. The interaction of the solar wind with a comet // Solar Phys. 1967. V. 1. № 1. P. 254–284
  2. Baranov V.B. Gas dynamics of solar wind interaction with cometary atmospheres // Astrophys. Space Phys. 1995. V. 9. 1–64.
  3. Houpis H. and Mendis D. On the development and global oscillations of cometary ionospheres // Astrophys. J. 1981. V. 243. № 1. P. 1088–1102.
  4. Markoni M.I. and Mendis D. The photochemical heating of the cometary atmosphere // Astrophys. J. 1982. V. 260. № 1. P. 386–394.
  5. Баранов В.Б., Лебедев М.Г. Самосогласованная газодинамическая модель обтекания ионосферы кометы солнечным ветром с учетом “нагружения” // Письма в АЖ. 1986. Т. 12. № 7. С. 551–556.
  6. Бабенко К.И., Русанов В.В. Разностные методы решения пространственных задач газовой динамики // Тр. 2-го всесоюзного съезда по теорет. и прикл. Механике. М.: Наука, 1965. Вып. 2. С. 247–262.
  7. Baranov V.B., Lebedev M.G. Solar wind flow past a cometary ionosphere // Astrophys. Space Sci. 1988. V. 147. P. 69–90.
  8. Gringauz K.I., Gombosi T.I., Remizov A.P., et al. First in situ plasma and neutral gas measurements at comet Halley // Nature. 1986. V. 321. P. 282.
  9. Баранов В.Б., Лебедев М.Г. Распределение плотности протонов солнечного ветра и “нагруженных” ионов в ударном слое перед ионосферой кометы // Письма в АЖ. 2014. Т. 40. № 1. С. 714–722.
  10. Баранов В.Б., Алексашов Д.Б. Влияние магнитного поля на распределение плотности протонов солнечного ветра и кометных ионов перед ионосферами комет // Письма в АЖ. 2014. Т. 43. № 2. С. 149–156.
  11. Neubauer F.M., Glassmeierer M., Pohl et al. First results from the Giotto magnetometer experiment at comet Halley // Nature.1986. V. 321. P. 352.
  12. Neubauer F.M. The ionopause transition and boundary layers at comet Halley from Giotto magnetic field observations // J. Geophys. Res. 1988. V. 93. P. 7272–7281.
  13. Баранов В.Б. О влиянии токов Холла на проникновение магнитного поля через тангенциальные разрывы в незамагниченную плазму в физических условиях космического пространства // Письма в АЖ. 2013. Т. 39. № 11. С. 878–883.
  14. Lebedev M.G. Comet Grigg-Skjellerup atmosphere interaction with the uncoming solar wind // Astrophys. Space Sci. 2000. V. 274. P. 221–230.
  15. Lebedev M.G., Baranov V.B., Alexashov D.B. Interaction of Low-Activity Comets with the Solar Wind // Earth Moon and Planets. 2015. V. 116. P. 159–179.
  16. Johnstone A.D., Coates A.J., Huddleston D.E., et al. // Astron. Astrophys. 1993. V. 268. P. L1.
  17. Алексашов Д.Б., Баранов В.Б., Лебедев М.Г. Трехмерная магнитогидродинамическая модель взаимодействия солнечного ветра с кометными атмосферами // ИЗВ. РАН. МЖГ. 2015. № 1.
  18. Goetz C., Koenders et al., First detection of a diamagnetic cavity at comet 67P Churyumov-Gerasimenko // Astron. and Astrophys. 2016. V. 588. № A24.
  19. Henri P., Vallieres X. et al, Diamagnetic region(s): structure of unmagnetized plasma around comet 67P/CG // MNRAS. 2017. V. 469. P. 372–379.
  20. Baranov V.B., Alexashov D.B., Lebedev M.G. MHD simulation of the solar wind flow around the coma of comet Churyumov–Gerasimenko during Rosetta’s flyby // MNRAS. 2019. V. 482. P. 5642–5650.
  21. Baranov V.B., Alexashov D.B., Lebedev M.G. Erratum: MHD simulation of the solar wind flow around the coma of comet Churyumov–Gerasimenko during Rosetta’s flyby // MNRAS 0.1. 2019.
  22. Gombosi T.I., De Zeeuw D.I., Heberli R.M. Three-dimensional multiscale MHD model of cometary plasma environments // J. Geophys. Res. 1996. V. 101. № A7. P. 15.233–15.253.
  23. Rubin M., Combi M.R., Daldorff L.K.S., Gombosi T.I., Hansen K.C., Shou Y., Tenishev V.M., Toth G., van der Holst B., Allwegg K. Comet IP Halley multifluid MHD model for Giotto fly-by // Astrophys. J. 2014. V. 781. Pt2. P. 86–98.
  24. Koenders C., Goetz C., Richter I., Motschmann U., Glassmeier K.N. Magnetic field pile-up and draping intermediately active comets: results from comet 67P/Churyumov-Gerasimenko at 2.0 AU // MNRAS. 2016. V. 462. P. 235–241.
  25. Wedlung C.S. et al. 2016. Astron. Astrophys. 587. A154.
  26. Aleksashov D.B., Baranov V.B., Ruderman M.S. On the stability of tangential discontinuity in the interaction of solar wind and cometary atmospheres // MNRAS. 2022.V. 513. P. 223–231.
  27. Ruderman M.S. Rayleigh-Taylor instability of a magnetic tangential discontinuity in the presence of flow // A&A. 2015. 580, A37.

Supplementary files


Copyright (c) 2023 В.Б. Баранов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies