The Contribution of Effector Cells of the Innate and Adaptive Immunity to the Pathogenesis of Radiation-Induced Carcinogenesis. Review (Part 1)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Background

1. Components of innate immunity and carcinogenesis

2. Tumor-associated myeloid cells and myeloid-derived suppressor cells

3. Tumor-associated neutrophils

4. Tumor-associated monocytes/macrophages

5. Natural killers of malignant neoplasm microenvironment

6. Conclusion

Авторлар туралы

E. Kodintseva

Urals Research Center for Radiation Medicine

Email: ovcharova.cat@mail.ru
Chelyabinsk, Russia

A. Akleyev

Southern-Urals State Medical University

Email: ovcharova.cat@mail.ru
Chelyabinsk, Russia

Әдебиет тізімі

  1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-Related Inflammation. Nature. 2008;454;7203:436-444. doi: 10.1038/nature07205.
  2. Weinstein I.B. Mitogenesis is Only One Factor in Carcinogenesis. Science. 1991;251; 4992:387-388. doi: 10.1126/science.1989073.
  3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006). Report to the General Assembly, with Scientific Annexes. V. 2. Annex C: Non-targeted and Delayed Effects of Exposure to Ionizing Radiation. New York, United Nations, 2008. 80 p.
  4. Голивец Т.П., Коваленко Б.С., Волков Д.В. Актуальные аспекты радиационного канцерогенеза: проблема оценки эффектов воздействия «малых» доз ионизирующего излучения. Аналитический обзор // Научные ведомости Белгородского государственного университета. Медицина. Фармация». 2012. Т.19. №16. С. 5-13 [Golivets T.P., Kovalenko B.S., Volkov D.V. Current Aspects of Radiation Carcinogenesis: the Problem of Assessing the Effects of Exposure to «Small» Doses of Ionizing Radiation. Analytical Review. Nauchnyye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta. Meditsina. Farmatsiya = Scientific Bulletin of the Belgorod State University. Medicine. Pharmacy. 2012;19;16:5-13 (In Russ.)].
  5. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR 2020/2021). Report to the General Assembly, with Scientific Annexes: Sources, Effects and Risks of Ionizing Radiation. New York, United Nations, 2021. 244 р.
  6. Аклеев А.В., Аклеев А.А., Андреев С.С., Блинова Е.А. и др. Последствия радиоактивного загрязнения реки Течи: Монография / Под ред. А.В.Аклеева. Челябинск: Книга, 2016. 400 c. [Akleyev A.V., Akleyev A.A., Andreyev S.S., Blinova Ye.A., et al. Posledstviya Radioaktivnogo Zagryazneniya Reki Techi = Consequences of Radioactive Contamination of the Techa River. Monograph. Ed.by A.V.Akleyev. Chelyabinsk, Kniga Publ., 2016. 400 p. (In Russ.)].
  7. Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д., Епифанова С.Б., Аклеев А.В. Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облучённого населения: 1956-2017 // Радиационная гигиена. 2020. Т.13. №3. С. 6-17 [Krestinina L.Yu., Silkin S.S., Mikryukova L.D., Yepifanova S.B., Akleyev A.V. Risk of Solid Malignant Neoplasms in the Ural Cohort of the Accident-Exposed Population: 1956-2017. Radiatsionnaya Gigiyena = Radiation Hygiene. 2020;13;3:6-17 (In Russ.)]. doi: 10.21514/1998-426X-2020-13-3-6-17.
  8. Туков А.Р., Шафранский И.Л., Котеров А.Н., Зиятдинов М.Н., Прохорова О.Н., Михайленко А.М. Оценка радиационного риска смерти от сердечно-сосудистых заболеваний ликвидаторов последствий аварии на ЧАЭС – работников предприятий атомной промышленности по данным о дозах различных видов облучения // Медицинская радиология и радиационная безопасность. 2024. Т.69. №3. С. 53-56 [Tukov A.R., Shafranskiy I.L., Koterov A.N., Ziyatdinov M.N., Prokhorova O.N., Mikhaylenko A.M. Assessment of the Radiation Risk of Death from Cardiovascular Diseases in Liquidators of the Consequences of the Chernobyl Accident - Workers of Nuclear Industry Enterprises Based on Data on Doses of Various Types of Radiation. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2024;69;3:53-56 (In Russ.)]. doi: 10.33266/1024-6177-2024-69-3-53-56.
  9. Castelo-Branco C., Soveral I. The Immune System and Aging: a Review. Gynecological Endocrinology. 2013;30;1:16-22. doi: 10.3109/09513590.2013.852531.
  10. Morrisette-Thomas V., Cohen A.A., Fülöp T., Riesco É., Legault V., Li Q., Milot E., Dusseault-Bélanger F., Ferrucci L. Inflamm-Aging does not Simply Reflect Increases in Pro-Inflammatory Markers. Mechanisms of Ageing and Development. 2014;139:49-57. doi: 10.1016/j.mad.2014.06.005.
  11. Jackaman C., Tomay F., Duong L., Abdol Razak N.B., Pixley F.J., Metharom P., Nelson D.J. Aging and Cancer: the Role of Macrophages and Neutrophils. Ageing Research Reviews. 2017;36:105-116. doi: 10.1016/j.arr.2017.03.008.
  12. Kim J.H., Brown S.L., Gordon M.N. Radiation-Induced Senescence: Therapeutic Opportunities. Radiation Oncology. 2023;18;10:1-11. doi: 10.1186/s13014-022-02184-2.
  13. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-Producing Gammadelta T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature. 2015;522:345-348. doi: 10.1038/nature14282.
  14. Bronte V., Brandau S., Chen S.H. Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications. 2016;7:12150. doi: 10.1038/ncomms12150.
  15. Патышева М.Р., Стахеева М.Н., Ларионова И.В., Тарабановская Н.А., Григорьева Е.С., Слонимская Е.М., Кжышковска Ю.Г., Чердынцева Н.В. Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии // Бюллетень сибирской медицины. 2019. Т.18. №1. C. 60-75 [Patysheva M.R., Stakheyeva M.N., Larionova I.V., Tarabanovskaya N.A., Grigor’yeva Ye.S., Slonimskaya Ye.M., Kzhyshkovska YU.G., Cherdyntseva N.V. Monocytes in Malignant Neoplasms: Prospects and Application Points for Diagnostics and Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2019;18;1:60-75 (In Russ.)]. doi: 10.20538/1682-0363-2019-1-60-75.
  16. Strauss L., Sangaletti S., Consonni F.M., Szebeni G., Morlacchi S., Totaro M.G., Porta C., Anselmo A., Tartari S., Doni A., Zitelli F., Tripodo C., Colombo M.P., Sica A. RORC1 Regulates Tumor-Promoting “Emergency” Granulo-Monocytopoiesis. Cancer Cell. 2015;28;2:253-269. doi: 10.1016/j.ccell.2015.07.006.
  17. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A Subset of Neutrophils in Human Systemic Inflammation Inhibits T Cell Responses Through MAC1. The Journal of Clinical Investigation. 2012;122;1:327-336. doi: 10.1172/JCI57990.
  18. Brandau S., Dumitru C.A., Lang S. Protumor and Antitumor Functions of Neutrophil Granulocytes. Seminars in Immunopathology. 2013;35:163-176. doi: 10.1007/s00281-012-0344-6.
  19. Fridlender Z.G., Sun J., Kim S. Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: N1 Versus N2 TAN. Cancer Cell. 2009;16;3:183-194. doi: 10.1016/j.ccr.2009.06.017.
  20. Leliefeld P.H.C., Koenderman L., Pillay J. How Neutrophils Shape Adaptive Immune Responses. Frontiers in Immunology. 2015;6:471. doi: 10.3389/fimmu.2015.00471.
  21. Batlle E., Massagué J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity. 2019;50;4:924-940. doi: 10.1016/j.immuni.2019.03.024.
  22. Palano M.T., Gallazzi M., Cucchiara M., De Lerma Barbaro A., Gallo D., Bassani B., Bruno A., Mortara L. Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis.Vaccines. 2021;99;12:1488. doi: 10.3390/vaccines9121488.
  23. Bonavita O., Massara M., Bonecchi R. Chemokine Regulation of Neutrophil Function in Tumors. Cytokine & Growth Factor Reviews. 2016;30:81-86. doi: 10.1016/j.cytogfr.2016.03.012.
  24. Kitamura T., Fujishita T., Loetscher P., Revesz L., Hashida H., Kizaka-Kondoh S., Aoki M., Taketo M.M. Inactivation of Chemokine (C-C motif) Receptor 1 (CCR1) Suppresses Colon Cancer Liver Metastasis by Blocking Accumulation of Immature Myeloid Cells in a Mouse Model. The Proceedings of the National Academy of Sciences. 2010;107;29:13063-13068. doi: 10.1073/pnas.1002372107.
  25. Yang L., Huang J., Ren X., Gorska A.E., Chytil A., Aakre M., Carbone D.P., Matrisian L.M., Richmond A., Lin P.C., Moses H.L. Abrogation of TGF Beta Signaling in Mammary Carcinomas Recruits Gr-1+CD11b+. Myeloid Cells that Promote Metastasis. Cancer Cell. 2008;13:23-35. doi: 10.1016/j.ccr.2007.12.004.
  26. Masucci M.T., Minopoli M., Del Vecchio S., Carriero M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology. 2020;11:1749. doi: 10.3389/fimmu.2020.01749.
  27. Albrengues J., Shields M.A., Ng D., Park C.G., Ambrico A., Poindexter M.E., Upadhyay P., Uyeminami D.L., Pommier A., Küttner V., Bružas E., Maiorino L., Bautista C., Carmona E.M., Gimotty P.A., Fearon D.T., Chang K., Lyons S.K., Pinkerton K.E., Trotman L.C., Goldberg M.S., Yeh J.T., Egeblad M. Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science. 2018;361;6409:eaao4227. doi: 10.1126/science.aao4227.
  28. Grayson P.C., Carmona-Rivera C., Xu L., Lim N., Gao Z., Asare A.L., Specks U., Stone J.H., Seo P., Spiera R.F., Langford C.A., Hoffman G.S., Kallenberg C.G., St Clair E.W., Tchao N.K., Ytterberg S.R., Phippard D.J., Merkel P.A., Kaplan M.J., Monach P.A. Neutrophil-Related Gene Expression and Low-Density Granulocytes Associated with Disease Activity and Response to Treatment in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatology. 2015;67:1922-1932. doi: 10.1002/art.39153.
  29. Sagiv J.Y., Michaeli J., Assi S. Mishalian I., Kisos H., Levy L., Damti P., Lumbroso D., Polyansky L., Sionov R.V., Ariel A., Hovav A.H., Henke E., Fridlender Z.G., Granot Z. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports. 2015;10;4:562-573. doi: 10.1016/j.celrep.2014.12.039.
  30. Mahiddine K., Blaisdell A., Ma S. Créquer-Grandhomme A., Lowell C.A., Erlebacher A. Relief of Tumor Hypoxia Unleashes the Tumoricidal Potential of Neutrophils. The Journal of Clinical Investigation. 2019;130;1:389-403. doi: 10.1172/JCI130952.
  31. Campbell E.L. Hypoxia-Recruited Angiogenic Neutrophils. Blood. 2015;126;17: 1972-1973. doi: 10.1182/blood-2015-09-666578.
  32. Powell D., Tauzin S., Hind L.E., Deng Q., Beebe D.J., Huttenlocher A. Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in Interstitial Tissues. Cell Reports. 2017;19;8:1572-1585. doi: 10.1016/j.celrep.2017.04.078.
  33. Vono M., Lin A., Norrby-Teglund A., Koup R.A., Liang F., Loré K. Neutrophils Acquire the Capacity for Antigen Presentation to Memory CD4(+) T Cells in vitro and ex vivo. Blood. 2017;129;14:1991-2001. doi: 10.1182/blood-2016-10-744441.
  34. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., Magri G., Knowles D.M., Tam W., Chiu A., Bussel J.B., Serrano S., Lorente J.A., Bellosillo B., Lloreta J., Juanpere N., Alameda F., Baró T., de Heredia C.D., Torán N., Català A., Torrebadell M., Fortuny C., Cusí V., Carreras C., Diaz G.A., Blander J.M., Farber C.M., Silvestri G., Cunningham-Rundles C., Calvillo M., Dufour C., Notarangelo L.D., Lougaris V., Plebani A., Casanova J.L., Ganal S.C., Diefenbach A., Aróstegui J.I., Juan M., Yagüe J., Mahlaoui N., Donadieu J., Chen K., Cerutti A. B Cell-Helper Neutrophils Stimulate the Diversification and Production of Immunoglobulin in the Marginal Zone of the Spleen. Nature Immunology. 2011;13:170-180. doi: 10.1038/ni.2194.
  35. Metzemaekers M., Gouwy M., Proost P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cellular & Molecular Immunology. 2020;17:433-450. doi: 10.1038/s41423-020-0412-0.
  36. Fine N., Tasevski N., McCulloch C.A., Tenenbaum H.C., Glogauer M. The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology. 2020;11:571085. doi: 10.3389/fimmu.2020.571085.
  37. Evrard M., Kwok I.W.H., Chong S.Z., Teng K.W.W., Becht E., Chen J., Sieow J.L., Penny H.L., Ching G.C., Devi S., Adrover J.M., Li J.L.Y., Liong K.H., Tan L., Poon Z., Foo S., Chua J.W., Su I.H., Balabanian K., Bachelerie F., Biswas S.K., Larbi A., Hwang W.Y.K., Madan V., Koeffler H.P., Wong S.C., Newell E.W., Hidalgo A., Ginhoux F., Ng L.G. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, Effector Functions. Immunity. 2018;48;2:364-379.e8. doi: 10.1016/j.immuni.2018.02.002.
  38. Zhu Y.P., Padgett L., Dinh H.Q., Marcovecchio P., Blatchley A., Wu R., Ehinger E., Kim C., Mikulski Z., Seumois G., Madrigal A., Vijayanand P., Hedrick C.C. Identification of an Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone Marrow. Cell Reports. 2018;24;9:2329-2341. doi: 10.1016/j.celrep.2018.07.097.
  39. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil Ageing is Regulated by the Microbiome. Nature. 2015;525:528-532. doi: 10.1038/nature15367.
  40. Szebeni G.J., Vizler C., Kitajka K., Puskas L.G. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflammation. 2017:9294018. doi: 10.1155/2017/9294018.
  41. Грачев А.Н., Самойлова Д.В., Рашидова М.А., Петренко А.А., Ковалева О.В. Макрофаги, ассоциированные с опухолью: современное состояние исследований и перспективы клинического использования // Успехи молекулярной онкологии. 2018. Т.5. №4. C. 20-28 [Grachev A.N., Samoylova D.V., Rashidova M.A., Petrenko A.A., Kovaleva O.V. Tumor-Associated Macrophages: Current State of Research and Prospects for Clinical Use. Uspekhi Molekulyarnoy Onkologii = Advances in Molecular Oncology. 2018;5;4:20-28 (In Russ.)]. doi: 10.17650/2313-805X-2018-5-4-20-28.
  42. Becherini C., Lancia A., Detti B., Lucidi S., Scartoni D., Ingrosso G., Carnevale M.G., Roghi M., Bertini N., Orsatti C., Mangoni M., Francolini G., Marani S., Giacomelli I., Loi M., Pergolizzi S., Bonzano E., Aristei C., Livi L. Modulation of Tumor-Associated Macrophage Activity with Radiation Therapy: a Systematic Review. Strahlentherapie und Onkologie. 2023;199:1173-1190. doi: 10.1007/s00066-023-02097-3.
  43. Kelly A., Gunaltay S., McEntee C.P., Shuttleworth E.E., Smedley C., Houston S.A., Fenton T.M., Levison S., Mann E.R., Travis M.A. Human Monocytes and Macrophages Regulate Immune Tolerance Via Integrin αvβ8-Mediated TGFβ Activation. Journal of Experimental Medicine. 2018;215;11:2725-2736. doi: 10.1084/jem.20171491.
  44. Arwert E.N., Harney A.S., Entenberg D., Wang Y., Sahai E., Pollard J.W., Condeelis J.S. A Unidirectional Transition from Migratory to Perivascular Macrophage is Required for Tumor Cell Intravasation. Cell Reports. 2018;23:1239-1248. doi: 10.1016/j.celrep.2018.04.007.
  45. Bron S., Henry L., Faes-Van’t Hull E., Turrini R., Vanhecke D., Guex N., Ifticene-Treboux A., Marina Iancu E., Semilietof A., Rufer N., Lehr H.A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-Expressing Monocytes are Lymphangiogenic and Associate Specifically with Lymphatics of Human Breast Cancer. Oncoimmunology. 2016;5;2:e1073882. doi: 10.1080/2162402X.2015.1073882.
  46. Guilliams M., van de Laar L. A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology. 2015;6:406. doi: 10.3389/fimmu.2015.00406.
  47. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии // Бюллетень сибирской медицины. 2017. Т.16. №4. C. 61-74 [Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheyeva M.N., Patysheva M.R., Zav’yalova M.V., Kzhyshkovskaya Yu.G. Macrophages and Tumor Progression: Towards Macrophage-Specific Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2017;16;4:61-74 (In Russ.)].doi: 10.20538/1682-0363-2017-4-61-74.
  48. Wynn T.A., Chawla A., Pollard J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature. 2013;496:445-455. doi: 10.1038/nature12034.
  49. Sierra J.M., Secchiari F., Nunez S.Y., Iraolagoitia X.L.R., Ziblat A., Friedrich A.D., Regge M.V., Santilli M.C., Torres N.I., Gantov M., Trotta A., Ameri C., Vitagliano G., Pita H.R., Rico L., Rovegno A., Richards N., Domaica C.I., Zwirner N.W., Fuertes M.B. Tumor-Experienced Нuman NK Cells Express High Levels of PD-L1 and Inhibit CD8(+) T Cell Proliferation. Frontiers in Immunology. 2021;12:745939. doi: 10.3389/fimmu.2021.745939.
  50. Stojanovic A., Cerwenka A. Natural Killer Cells and Solid Tumors. Journal of Innate Immunity. 2011;3;4:355-364. doi: 10.1159/000325465.
  51. Habif G., Crinier A., Andre P., Vivier E., Narni-Mancinelli E. Targeting Natural Killer Cells in Solid Tumors. Cellular & Molecular Immunology. 2019;16:415-422. doi: 10.1038/s41423-019-0224-2.
  52. Levi I., Amsalem H., Nissan A., Darash-Yahana M., Peretz T., Mandelboim O., Rachmilewitz J. Characterization of Tumor Infiltrating Natural Killer Cell Subset. Oncotarget. 2015;6:13835-13843. doi: 10.18632/oncotarget.3453.
  53. Cózar B., Greppi M., Carpentier S., Narni-Mancinelli E., Chiossone L., Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discovery. 2021;11:34-44. doi: 10.1158/2159-8290.CD-20-0655.
  54. Gallazzi M., Baci D., Mortara L., Bosi A., Buono G., Naselli A., Guarneri A., Dehò F., Capogrosso P., Albini A., Noonan D.M., Bruno A. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors. Frontiers in Immunology. 2020;11:586126. doi: 10.3389/fimmu.2020.586126.
  55. Bruno A., Bassani B., D’Urso D.G., Pitaku I., Cassinotti E., Pelosi G., Boni L., Dominioni L., Noonan D.M., Mortara L., Albini A. Angiogenin and the MMP9-TIMP2 Axis are Up-Regulated in Proangiogenic, Decidual NK-Like Cells from Patients with Colorectal Cancer. Federation of American Societies for Experimental Biology Journal. 2018;32:5365-5377. doi: 10.1096/fj.201701103R.
  56. Gotthardt D., Putz E.M., Grundschober E., Prchal-Murphy M., Straka E., Kudweis P., Heller G., Bago-Horvath Z., Witalisz-Siepracka A., Cumaraswamy A.A., Gunning P.T., Strobl B., Müller M., Moriggl R., Stockmann C., Sexl V. STAT5 is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discovery. 2016;6:414-429. doi: 10.1158/2159-8290.CD-15-0732.
  57. Корнева Е.А. Пути взаимодействия нервной и иммунной систем: история и современность, клиническое применение // Медицинская иммунология. 2020. Т. 22. №3. С. 405-418 [Korneva Ye.A. Pathways of Interaction between the Nervous and Immune Systems: History and Modernity, Clinical Application. Meditsinskaya Immunologiya = Medical Immunology. 2020;22;3:405-418 (In Russ.)]. doi: 10.15789/1563-0625-PON-1974.
  58. Stakheyeva M., Eidenzon D., Slonimskaya E., Patysheva M., Bogdashin I., Kolegova E., Grigoriev E., Choinzonov E., Cherdyntseva N. Integral Characteristic of the Immune System State Predicts Breast Cancer Outcome. Experimental Oncology. 2019;41;1:32-38.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».