Evolution of the Electrochemical Reduction of Indium Tin Oxide in an Aqueous Solution of Silica Particles


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Electrochemical reduction of indium tin oxide (ITO) in SiO2 solution was investigated by analyzing the properties of ITO and the reactant diffusion in ITO films. In the electrochemical system, an ITO anode and cathode were immersed in 1 wt % SiO2 solution (pH 6.8). The electrodes were set to 15 V at room temperature under different durations of electrochemical treatment. The properties of the cathodic ITO film were analyzed after treatment. The ITO films varied from transparent to black and gray during the treatment. In2O3 underwent reduction and transformed to In, as indicated by X-ray diffractometry. The surface morphologies of the ITO samples revealed that the ITO crystals were damaged. The damage resulted in numerous aggregated particles forming on the film surface after electrochemical treatment. The major elements of the particles were confirmed to be oxygen and In. The electrical resistance of the treated ITO considerably increased because of the damage to the In2O3 crystals. The simulation of the diffusion model and experimental results indicated that the electrochemical reaction rate of ITO was controlled by the reactant diffusion in the ITO film.

Авторлар туралы

Leo Chau-Kuang Liau

Department of Chemical Engineering and Materials Science, Yuan Ze University

Хат алмасуға жауапты Автор.
Email: lckliau@saturn.yzu.edu.tw
Қытай республикасы, Chung-Li, Taoyang, 32003

Jia-Lin Jhan

Department of Chemical Engineering and Materials Science, Yuan Ze University

Email: lckliau@saturn.yzu.edu.tw
Қытай республикасы, Chung-Li, Taoyang, 32003

Ping-Wei Kuo

Department of Chemical Engineering and Materials Science, Yuan Ze University

Email: lckliau@saturn.yzu.edu.tw
Қытай республикасы, Chung-Li, Taoyang, 32003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019