Importance of stochastic limitations in electrochemistry at arrays of nanoelectrodes functionalized by redox self-assembled monolayers
- 作者: Sliusarenko O.Y.1, Oleinick A.I.1, Svir I.B.1,2, Amatore C.A.1
- 
							隶属关系: 
							- CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure-PSL Research University, Département de Chimie
- Mathematical and Computer Modelling Laboratory
 
- 期: 卷 53, 编号 9 (2017)
- 页面: 1019-1028
- 栏目: Section 3. Electron Transfer Kinetics and Electrochemical Processes
- URL: https://journals.rcsi.science/1023-1935/article/view/189049
- DOI: https://doi.org/10.1134/S1023193517090129
- ID: 189049
如何引用文章
详细
In order to increase signal-to-noise (S/N) performances, the current trend in electro(bio)analytical chemistry consists in developing arrays whose electroactive components are considerably reduced in size and already approach the very nanoscale. A comparable situation involving nanoscale electroactive or electrocatalytic nanoparticles randomly dispersed on a flat non-electroactive surface is already extremely common. Similarly, insulating self-assembled monolayers (SAMs) are often modified by dispersed ‘molecular nanoelectrodes’ consisting of nanopatches of insulating tethers bearing redox-head groups exposed to the analyzed solution with the purpose of mediating/catalyzing electron transfer kinetics between a substrate and the electrode. Finally, most SAMs present randomly distributed nano-sized pinholes through which direct electron transfer from the underlying electrode and a dissolved substrate may occur. It is therefore clear that these continuous developments as well as the increasingly facile and low-cost access to nanofabrication techniques will soon let (bio)electroanalytical chemists to resort more and more often to arrays of functionalized nanoelectrodes or nanoparticles. However, the theoretical analyses and stochastic simulations reported in this work demonstrate that reaching the nanoscale implies a complete change of theoretical electrochemical paradigms. This is of extreme importance as soon as one wishes to rationalize quantitatively measurements involving nano-scaled electroactive components. Indeed, based on Brownian simulations, we established that beyond a dimension of a few tens of nanometers, stochastic effects strongly alter the meaning of the kinetic and thermodynamic measurements vs. those based on classical electrochemical models.
作者简介
O. Sliusarenko
CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure-PSL Research University, Département de Chimie
														Email: christian.amatore@ens.fr
				                					                																			                												                	法国, 							Paris, 75005						
A. Oleinick
CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure-PSL Research University, Département de Chimie
														Email: christian.amatore@ens.fr
				                					                																			                												                	法国, 							Paris, 75005						
I. Svir
CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure-PSL Research University, Département de Chimie; Mathematical and Computer Modelling Laboratory
														Email: christian.amatore@ens.fr
				                					                																			                												                	法国, 							Paris, 75005; Kharkiv, 61166						
C. Amatore
CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure-PSL Research University, Département de Chimie
							编辑信件的主要联系方式.
							Email: christian.amatore@ens.fr
				                					                																			                												                	法国, 							Paris, 75005						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					