Mechanism of Electric Polarization of Water Contact Layer at Its Interface with the Ion Crystal Surface


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Molecular mechanisms of the electric polarization of supercooled water at its interface with the basal face of β-AgI crystal are studied by computer simulation. By the background of thermal fluctuations at 260 K, the gradual growth of the molecular film from vapor is reproduced from the submonomolecular stage to the bulk liquid and the mechanism of electric double layer formation is analyzed in detail. Polarization of the contact layer of water is caused by the local fields at its interface with the crystal surface. The potential difference in the electric double layer emerging on the basal face of the single crystal reaches 0.88 V but is different on different faces as regards both its magnitude and sign. The asymmetry in the spatial charge distribution in the H2O molecule is responsible for the different strength of water adhesion to the surface of crystal faces containing either positive or negative ions in their crystallographic surface layer. In an aqueous electrolyte containing ionic impurities, the electric double layer field induces compensating motion of mobile charge carriers to the crystal surface and their adsorption. As a result of contact-layer polarization, a micro-crystal immersed into an electrolyte droplet exerts the distilling effect on the latter, and the adsorption of mobile ions on the surface of a solid-crystalline particle can affect its activity as the center of heterogeneous nucleation of atmospheric moisture.

Sobre autores

S. Shevkunov

Peter-the-Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: shevk54@mail.ru
Rússia, St. Petersburg, 195251


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies