Electrochemical oxidation of thrombin on carbon screen printed electrodes

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electrochemical oxidation of thrombin on the surface of carbon screen printed electrodes was studied. The electrochemical activity of thrombin was predicted, using bioinformation analysis, based on the data about the electrochemical properties of amino acids. The number of potentially electroactive amino acid residues, namely, tyrosine (Tyr), tryptophan (Trp), cysteine (Cys), histidine (His), methionine (Met), and cystine (Cys-Cys) located on the protein surface and orientated by their electroactive groups toward the electrode surface, i.e., accessible for electrochemical oxidation was calculated. The theoretical data were confirmed experimentally by cyclic and square-wave voltammetry. The available data on the protein structure allowed us to attribute the recorded electrochemical signals of thrombin oxidation to certain types of amino acid residue: the oxidation peak with a potential maximum at 0.7–0.8 V (vs. Ag/AgCl) was attributed to the oxidation of the Trp and Tyr residues; the wave in the range 1.0–1.2 V, to the oxidation of His; and the wave at 1.2–1.5 V, to the oxidation of Met and Cys-Cys. The electroanalysis based on the oxidation peak of the Tyr and Trp amino acid residues allowed to detect thrombin up to the concentration of 10–7 M. The suggested strategy for predicting the electrochemical activity can be used for investigating the properties of many other proteins and peptides and serve as a basis for their quantitative determination when developing various sensor and biosensor devices.

Sobre autores

E. Suprun

Institute of Biomedical Chemistry

Autor responsável pela correspondência
Email: lenasuprun@mail.ru
Rússia, Moscow, 119121

M. Zharkova

Institute of Biomedical Chemistry

Email: lenasuprun@mail.ru
Rússia, Moscow, 119121

A. Veselovsky

Institute of Biomedical Chemistry

Email: lenasuprun@mail.ru
Rússia, Moscow, 119121

A. Archakov

Institute of Biomedical Chemistry

Email: lenasuprun@mail.ru
Rússia, Moscow, 119121

V. Shumyantseva

Institute of Biomedical Chemistry

Email: lenasuprun@mail.ru
Rússia, Moscow, 119121

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017