Evaluation Behavior for the Adsorptive of Ca(II) and Mg(II) Ions (Hardness of Water) from Water by Modified Copper Based on Metal Organic Frameworks and Potentiometric Sensors


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study presents adsorption of Ca(II) and Mg(II) ions from water at different concentration. This causes problems such as corrosion and scaling. MOF–Cu (Cu3(BTC)2) and modified MOF–Cu were study as an adsorbent of Ca2+ and Mg2+ ions from water. The morphology and structure of the MOFs adsorbents were characterized by XRD, FT-IR, nitrogen adsorption/desorption and SEM methods. A batch test with various conditions was studied. The adsorption kinetics and isotherms are described. The experimental data were fitted to second-order-kinetics and Langmuir models. The adsorption capacity of MOF–Cu–GSH (4.6 mg/g (90.2%) and 6.2 mg/g (87.2%)) is higher than Cu3(BTC)2 (9.2 mg/g (81.2%) and 11.3 mg/g (77.4%)) for Ca(II) and Mg(II) ions respectively, through 6 h, 50 ppm, pH 7, 50 mg and 30°C. These potentiometric sensors respond to Mg(II) and Ca(II) ions in the wide linear concentration range of 1.0 × 10–2–1.0 × 10–7 and 1.0 × 10–2–1.3 × 10–7 mol L–1 with Nernstian slopes of 30.04 ± 0.98 and 29.15 ± 0.44 mV decade–1 of Mg(II) and Ca(II) ions and detection limit of 1 × 10–7 and 1.3 × 10–7 mol L–1 for Mg–CPE (electrode IV) and Ca–CPE (electrode X), respectively. The electrodes were pH independent within the range of 2.5–7.5 and 3.0–8.0, with a fast response time of about 7 and 10 s for electrode (IV) and electrode (X), respectively. The results obtained were compared well with those obtained using inductively coupled plasma atomic emission spectrometry (ICP–AES).

Sobre autores

Tamer Awad Ali

Egyptian Petroleum Research Institute (EPRI)

Autor responsável pela correspondência
Email: dr_tamerawad@yahoo.com
Egito, Cairo, 11727

H. El Salam

Egyptian Petroleum Research Institute (EPRI)

Email: dr_tamerawad@yahoo.com
Egito, Cairo, 11727

Hager Ali

Egyptian Petroleum Research Institute (EPRI)

Email: dr_tamerawad@yahoo.com
Egito, Cairo, 11727

Y. Moustafa

Egyptian Petroleum Research Institute (EPRI)

Email: dr_tamerawad@yahoo.com
Egito, Cairo, 11727

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019