Characteristics of Pt Electrode Activated by Tb1 − xCexO2 − α Films in Contact with ZrO2 + 10 mol % Y2O3 Electrolyte


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Porous platinum electrodes on ZrO2 + 10 mol % Y2O3 solid electrolyte (YSZ) are activated by Tb1 − xCexO2 − α (x = 0; 0.15; 0.33; 0.5; 1.0) mixed oxides by impregnation, and their polarization characteristics are studied. The activation is carried out under the conditions that an oxide activator nanofilm forms on the electrolyte surface as a result of heat treatment of the electrode. The activation is performed by impregnating the electrodes with low-concentrated alcohol solution of terbium and cerium nitrates (1.5% as recalculated to the oxides) and subsequent slow heating (≤50°C/h) to 850°C. An average thickness of the film on the electrolyte after a single activation (≈0.1 mg oxides/cm2) is estimated at 10–20 nm. The electrodes of Pt|YSZ|Pt cell activated by Tb1 − xCexO2 − α films are studied by the impedance method in the oxidative and reductive atmospheres in the range of 700 to 500°C. The polarization conductivities of the activated electrodes increase by 2–3 orders of magnitude. The studied electrodes are discussed within the model of compact oxide electrodes, where platinum plays the role of collector. The advantage of these electrodes is that they can work both in the oxidative and reductive conditions. According to the aggregate of the properties, Tb1 − xCexO2 − α compounds at x = 0.3–0.5 are recommended for activation.

Sobre autores

A. Kovrova

Institute of High-Temperature Electrochemistry, Ural Branch

Autor responsável pela correspondência
Email: kovrova@ihte.uran.ru
Rússia, Yekaterinburg, 620137

V. Gorelov

Institute of High-Temperature Electrochemistry, Ural Branch

Email: kovrova@ihte.uran.ru
Rússia, Yekaterinburg, 620137

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019