Oxygen Mobility in the Materials for Solid Oxide Fuel Cells and Catalytic Membranes (Review)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Oxygen transport (including oxygen mobility and surface reactivity) is one of the important factors governing electrochemical activity of solid oxide fuel cells electrodes as well as oxygen and hydrogen separation membranes based on materials with mixed oxide-ionic and electronic conductivity. In this work, oxygen mobility data obtained for a series of materials destined for such devices using modern techniques of oxygen isotope heteroexchange are summarized. Series of solid oxide fuel cells’ and membranes’ materials were studied by isotope exchange of their oxygen with 18O2 and C18O2 in isothermal and temperature-programmed modes using closed and flow reactors and data analysis based on developed model of oxygen diffusion and exchange. For solid electrolytes’ materials (Sc- and Ce-doped zirconia) as well as for proton-conducting materials [Ln5.5(Mo,W)O11.25], the effect of composition heterogeneity on the oxygen mobility was demonstrated. For Ln6 – xWO12 – δ, a strong effect of structure on the oxygen mobility was demonstrated. For oxides with asymmetric structure, where oxygen migration proceeds via cooperative mechanisms [La2(Mo,W)2O9, (Ln,Ca)2NiO4], the doping hampers the cooperative migration, resulting in oxygen mobility deterioration and sometimes forming additional slow diffusion channels. In the PrNi0.5Co0.5O3–Ce0.9Y0.1O2 nanocomposites that are materials of the solid oxide fuel cells’ cathode and functional layer of the oxygen separation membranes, two diffusion channels were observed, where more mobile oxygen corresponds to the fluorite phase and interfaces; less mobile, to the perovskite phase. This is due to special features of cations redistribution between the phases.

About the authors

V. A. Sadykov

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University, Department of Natural Sciences

Author for correspondence.
Email: sadykov@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

E. M. Sadovskaya

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University, Department of Natural Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

N. F. Eremeev

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

P. I. Skriabin

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

A. V. Krasnov

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

Yu. N. Bespalko

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

S. N. Pavlova

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

Yu. E. Fedorova

Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Novosibirsk, 630090

E. Yu. Pikalova

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: yeremeev21@catalysis.ru
Russian Federation, Yekaterinburg, 620137; Yekaterinburg, 620002

A. V. Shlyakhtina

Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: yeremeev21@catalysis.ru
Russian Federation, Moscow, 117991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.