Genetic risk assessment of the joint effect of several genes: Critical appraisal


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

When assessing the combined action of genes on the quantitative or qualitative phenotype we encounter a phenomenon that could be named the “paradox of the risk score summation.” It arises when the search of risk allele and assessment of their combined action are performed with the same single dataset. Too often such methodological error occurs when calculating the so called genetic risk score (GRS), which refers to the total number of alleles associated with the disease. Examples from numerous published genetic association studies are considered in which the claimed statistically significant effects can be attributed to the “risk score summation paradox.” In the second section of the review we discuss the current modifications of multiple regression analysis addressed to the so called “np problem” (the number of points is much smaller than the number of possible predictors). Various algorithms for the model selection (searching the significant predictor combinations) are considered, beginning from the common marginal screening of the “top” predictors to LASSO and other modern algorithms of compressed sensing.

Об авторах

A. Rubanovich

Vavilov Institute of General Genetics

Автор, ответственный за переписку.
Email: rubanovich@vigg.ru
Россия, Moscow, 119991

N. Khromov-Borisov

Vreden Russian Research Institute of Traumatology and Orthopedics

Email: rubanovich@vigg.ru
Россия, St. Petersburg, 195427

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).