Equilibrium boron distribution between Fe–C–Si–Al melt and boron-bearing slag


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

HSC 6.1 Chemistry software (Outokumpu) and a simplex–lattice experiment design are employed in thermodynamic modeling of the equilibrium boron distribution between steel containing 0.2% C, 0.35% Si, and 0.028% Al (wt % are used throughout) and CaO–SiO2–Al2)3–8% MgO–4% B2O3 slag over a broad range of chemical composition at 1550 and 1600°C. For each temperature, mathematical models (in the form of a reduced third-order polynomial) are obtained for the equilibrium boron distribution between the slag and the molten metal as a function of the slag composition. The results of simulation are presented as graphs of the composition and equilibrium distribution of boron. The slag basicity has considerable influence on the distribution coefficient of boron. For example, increase in slag basicity from 5 to 8 at 1550°C decreases the boron distribution coefficient from 160 to 120 and hence increases the boron content in the metal from 0.021% when LB = 159 to 0.026% when LB = 121. In other words, increase in slag basicity favorably affects the reduction of boron. Within the given range of chemical composition, the positive influence of the slag basicity on the reduction of boron may be explained in terms of the phase composition of the slag and the thermodynamics of boron reduction. Increase in metal temperature impairs the reduction of boron. With increase in temperature to 1600°C, the equilibrium distribution coefficient of boron increases by 10, on average. On the diagrams, we see regions of slag composition with 53–58% CaO, 8.5–10.5% SiO2, and 20–27% Al2O3 corresponding to boron distribution coefficients of 140–170 at 1550 and 1600°C. Within those regions, when the initial slag contains 4% B2O3, we may expect boron concentrations in the metal of 0.020% when LB = 168 and 0.023% when LB = 139.

作者简介

A. Babenko

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
俄罗斯联邦, Yekaterinburg; Yekaterinburg

V. Zhuchkov

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
俄罗斯联邦, Yekaterinburg; Yekaterinburg

L. Leont’ev

Presidium of the Russian Academy of Sciences; Baikov Institute of Metallurgy and Materials Sciences; Moscow Institute of Steel and Alloys

Email: upol.ru@mail.ru
俄罗斯联邦, Moscow; Moscow; Moscow

A. Upolovnikova

Institute of Metallurgy, Ural Branch

编辑信件的主要联系方式.
Email: upol.ru@mail.ru
俄罗斯联邦, Yekaterinburg

A. Konyshev

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
俄罗斯联邦, Yekaterinburg; Yekaterinburg


版权所有 © Allerton Press, Inc., 2017
##common.cookie##