Equilibrium boron distribution between Fe–C–Si–Al melt and boron-bearing slag


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

HSC 6.1 Chemistry software (Outokumpu) and a simplex–lattice experiment design are employed in thermodynamic modeling of the equilibrium boron distribution between steel containing 0.2% C, 0.35% Si, and 0.028% Al (wt % are used throughout) and CaO–SiO2–Al2)3–8% MgO–4% B2O3 slag over a broad range of chemical composition at 1550 and 1600°C. For each temperature, mathematical models (in the form of a reduced third-order polynomial) are obtained for the equilibrium boron distribution between the slag and the molten metal as a function of the slag composition. The results of simulation are presented as graphs of the composition and equilibrium distribution of boron. The slag basicity has considerable influence on the distribution coefficient of boron. For example, increase in slag basicity from 5 to 8 at 1550°C decreases the boron distribution coefficient from 160 to 120 and hence increases the boron content in the metal from 0.021% when LB = 159 to 0.026% when LB = 121. In other words, increase in slag basicity favorably affects the reduction of boron. Within the given range of chemical composition, the positive influence of the slag basicity on the reduction of boron may be explained in terms of the phase composition of the slag and the thermodynamics of boron reduction. Increase in metal temperature impairs the reduction of boron. With increase in temperature to 1600°C, the equilibrium distribution coefficient of boron increases by 10, on average. On the diagrams, we see regions of slag composition with 53–58% CaO, 8.5–10.5% SiO2, and 20–27% Al2O3 corresponding to boron distribution coefficients of 140–170 at 1550 and 1600°C. Within those regions, when the initial slag contains 4% B2O3, we may expect boron concentrations in the metal of 0.020% when LB = 168 and 0.023% when LB = 139.

Sobre autores

A. Babenko

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
Rússia, Yekaterinburg; Yekaterinburg

V. Zhuchkov

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
Rússia, Yekaterinburg; Yekaterinburg

L. Leont’ev

Presidium of the Russian Academy of Sciences; Baikov Institute of Metallurgy and Materials Sciences; Moscow Institute of Steel and Alloys

Email: upol.ru@mail.ru
Rússia, Moscow; Moscow; Moscow

A. Upolovnikova

Institute of Metallurgy, Ural Branch

Autor responsável pela correspondência
Email: upol.ru@mail.ru
Rússia, Yekaterinburg

A. Konyshev

Institute of Metallurgy, Ural Branch; Yeltsin Ural Federal University

Email: upol.ru@mail.ru
Rússia, Yekaterinburg; Yekaterinburg


Declaração de direitos autorais © Allerton Press, Inc., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies