Thermodynamic Aspects of Cr2O3 Reduction by Carbon


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In order to save chromium resources, technology of flux-cored wire surfacing is of great practical interest. In this case, Cr2O3 chromium oxide and carbon as a reducing agent are used as fillers. The thermodynamic probability assessment of 16 reactions between them under standard conditions, as well as for certain reactions under different standard conditions, was carried out using tabulated thermodynamic data of reactants in the temperature range of 1500–3500 K. The following were considered as standard states for reactants: Cr(ref) (reference state, melting point 2130 K, boiling point 2952 K), Cr(liq), Cr(gas), Cr2O3(cr, liq), Cr2O3(gas), C(ref), and as possible reaction products and standard states for them CO(gas), CO2(gas), Cr23C6(сr), Cr7C3(cr), Cr3C2(cr). The reaction probability was estimated using standard Gibbs energy and was calculated using the Van Goff isotherm equation. The chromium dissolution in metal of surfacing bath or probable partial pressures of CO and CO2 in gas phase was considered and then calculated from the equilibrium of carbon gasification reaction. The carbon presence in flux-cored wire with chromium oxide Cr2O3 as a reducing agent will necessarily lead to the occurrence of reduction reactions with chromium carbide generation, and possibly chromium itself. The generation of Cr7C3(сr) carbide is likely. With a longer life span of chromium oxide and carbon at a temperature above 2500 K, chromium generation as a component of the surfacing bath is more thermodynamically probable than carbide generation. Chromium oxide has the highest reactivity in Cr2O3(liq) state. Direct reduction is preferential. The generation of CO(gas) as a carbon oxidation product is more probable. The chromium dissolution in metal increases the thermodynamic reaction probability with its generation, as well as further reduces the reaction probability in which chromium is the starting material.

Об авторах

R. Kryukov

Siberian State Industrial University

Автор, ответственный за переписку.
Email: rek_nzrmk@mail.ru
Россия, Kemerovo oblast, Novokuznetsk, 654007

V. Goryushkin

Siberian State Industrial University

Автор, ответственный за переписку.
Email: koax@sibsiu.ru
Россия, Kemerovo oblast, Novokuznetsk, 654007

Yu. Bendre

Siberian State Industrial University

Автор, ответственный за переписку.
Email: bendre@list.ru
Россия, Kemerovo oblast, Novokuznetsk, 654007

L. Bashchenko

Siberian State Industrial University

Автор, ответственный за переписку.
Email: luda.baschenko@gmail.com
Россия, Kemerovo oblast, Novokuznetsk, 654007

N. Kozyrev

Siberian State Industrial University

Автор, ответственный за переписку.
Email: kozyrev_na@mtsp.sibsiu.ru
Россия, Kemerovo oblast, Novokuznetsk, 654007


© Allerton Press, Inc., 2019

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах