A Randomized Algorithm for a Sequence 2-Clustering Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a strongly NP-hard problem of partitioning a finite Euclidean sequence into two clusters of given cardinalities minimizing the sum over both clusters of intracluster sums of squared distances from clusters elements to their centers. The center of one cluster is unknown and is defined as the mean value of all points in the cluster. The center of the other cluster is the origin. Additionally, the difference between the indices of two consequent points from the first cluster is bounded from below and above by some constants. A randomized algorithm that finds an approximation solution of the problem in polynomial time for given values of the relative error and failure probability and for an established parameter value is proposed. The conditions are established under which the algorithm is polynomial and asymptotically exact.

作者简介

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

S. Khamidullin

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kham@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

V. Khandeev

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

编辑信件的主要联系方式.
Email: khandeev@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018