NP-Hardness of Some Euclidean Problems of Partitioning a Finite Set of Points


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Problems of partitioning a finite set of Euclidean points (vectors) into clusters are considered. The criterion is to minimize the sum, over all clusters, of (1) squared norms of the sums of cluster elements normalized by the cardinality, (2) squared norms of the sums of cluster elements, and (3) norms of the sum of cluster elements. It is proved that all these problems are strongly NP-hard if the number of clusters is a part of the input and are NP-hard in the ordinary sense if the number of clusters is not a part of the input (is fixed). Moreover, the problems are NP-hard even in the case of dimension 1 (on a line).

作者简介

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

A. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018