NP-Hardness of Some Euclidean Problems of Partitioning a Finite Set of Points
- 作者: Kel’manov A.V.1,2, Pyatkin A.V.1,2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- 期: 卷 58, 编号 5 (2018)
- 页面: 822-826
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180253
- DOI: https://doi.org/10.1134/S0965542518050123
- ID: 180253
如何引用文章
详细
Problems of partitioning a finite set of Euclidean points (vectors) into clusters are considered. The criterion is to minimize the sum, over all clusters, of (1) squared norms of the sums of cluster elements normalized by the cardinality, (2) squared norms of the sums of cluster elements, and (3) norms of the sum of cluster elements. It is proved that all these problems are strongly NP-hard if the number of clusters is a part of the input and are NP-hard in the ordinary sense if the number of clusters is not a part of the input (is fixed). Moreover, the problems are NP-hard even in the case of dimension 1 (on a line).
作者简介
A. Kel’manov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
编辑信件的主要联系方式.
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
A. Pyatkin
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: kelm@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
