A new sequential approach for solving the integro-differential equation via Haar wavelet bases


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, we present a method for numerical approximation of fixed point operator, particularly for the mixed Volterra–Fredholm integro-differential equations. The main tool for error analysis is the Banach fixed point theorem. The advantage of this method is that it does not use numerical integration, we use the properties of rationalized Haar wavelets for approximate of integral. The cost of our algorithm increases accuracy and reduces the calculation, considerably. Some examples are provided toillustrate its high accuracy and numerical results are compared with other methods in the other papers.

作者简介

H. Beiglo

Department of Applied Mathematics

Email: erfaniyan@uoz.ac.ir
伊朗伊斯兰共和国, Mashhad

M. Erfanian

Department of Applied Mathematics

编辑信件的主要联系方式.
Email: erfaniyan@uoz.ac.ir
伊朗伊斯兰共和国, Mashhad

M. Gachpazan

Department of Applied Mathematics

Email: erfaniyan@uoz.ac.ir
伊朗伊斯兰共和国, Mashhad

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017