On polyhedral approximations in an n-dimensional space
- 作者: Balashov M.V.1
-
隶属关系:
- Moscow Institute of Physics and Technology (State University)
- 期: 卷 56, 编号 10 (2016)
- 页面: 1679-1685
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178691
- DOI: https://doi.org/10.1134/S0965542516100031
- ID: 178691
如何引用文章
详细
The polyhedral approximation of a positively homogeneous (and, in general, nonconvex) function on a unit sphere is investigated. Such a function is presupporting (i.e., its convex hull is the supporting function) for a convex compact subset of Rn. The considered polyhedral approximation of this function provides a polyhedral approximation of this convex compact set. The best possible estimate for the error of the considered approximation is obtained in terms of the modulus of uniform continuous subdifferentiability in the class of a priori grids of given step in the Hausdorff metric.
作者简介
M. Balashov
Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: balashov73@mail.ru
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700
补充文件
