Transformations of variables invariant under minimization of binary functions of multivalued arguments
- 作者: Panov A.V.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics
- 期: 卷 56, 编号 8 (2016)
- 页面: 1517-1521
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178623
- DOI: https://doi.org/10.1134/S0965542516080121
- ID: 178623
如何引用文章
详细
A number of transformations are introduced that are invariant under minimization problems and make it possible to reduce the maximum possible number of distinct columns in the matrix of zeros of an arbitrary binary function of multivalued arguments. As a result, simpler disjunctive normal forms are constructed. Complexity bounds for the constructed disjunctive normal forms of arbitrary binary functions of k-valued arguments are given.
作者简介
A. Panov
Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: panov.al.vit@gmail.com
俄罗斯联邦, Moscow, 119991
补充文件
