Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids
- 作者: Volkov K.N.1, Emel’yanov V.N.1, Teterina I.V.1
-
隶属关系:
- St. Petersburg Baltic Technical University
- 期: 卷 56, 编号 2 (2016)
- 页面: 286-302
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178281
- DOI: https://doi.org/10.1134/S0965542516020159
- ID: 178281
如何引用文章
详细
Issues concerning the implementation and practical application of geometric and algebraic multigrid techniques for solving systems of difference equations generated by the finite volume discretization of the Euler and Navier–Stokes equations on unstructured grids are studied. The construction of prolongation and interpolation operators, as well as grid levels of various resolutions, is discussed. The results of the application of geometric and algebraic multigrid techniques for the simulation of inviscid and viscous compressible fluid flows over an airfoil are compared. Numerical results show that geometric methods ensure faster convergence and weakly depend on the method parameters, while the efficiency of algebraic methods considerably depends on the input parameters.
作者简介
K. Volkov
St. Petersburg Baltic Technical University
编辑信件的主要联系方式.
Email: dsci@mail.ru
俄罗斯联邦, 1-ya Krasnoarmeiskaya ul. 1, St. Petersburg, 190005
V. Emel’yanov
St. Petersburg Baltic Technical University
Email: dsci@mail.ru
俄罗斯联邦, 1-ya Krasnoarmeiskaya ul. 1, St. Petersburg, 190005
I. Teterina
St. Petersburg Baltic Technical University
Email: dsci@mail.ru
俄罗斯联邦, 1-ya Krasnoarmeiskaya ul. 1, St. Petersburg, 190005
补充文件
