An Adaptive Proximal Method for Variational Inequalities
- 作者: Gasnikov A.V.1,2,3, Dvurechensky P.E.3,4, Stonyakin F.S.5,1, Titov A.A.1
-
隶属关系:
- Moscow Institute of Physics and Technology
- State University—Higher School of Economics
- Kharkevich Institute for Information Transmission Problems
- Weierstrass Institute for Applied Analysis and Stochastics
- Crimea Federal University
- 期: 卷 59, 编号 5 (2019)
- 页面: 836-841
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180593
- DOI: https://doi.org/10.1134/S0965542519050075
- ID: 180593
如何引用文章
详细
A novel analog of Nemirovski’s proximal mirror method with an adaptive choice of constants in the minimized prox-mappings at each iteration for variational inequalities with a Lipschitz continuous field is proposed. Estimates of the number of iterations needed to attain the desired quality of solution of the variational inequality are obtained. It is shown how the proposed approach can be extended for the case of Hölder continuous field. A modification of the proposed algorithm for the case of an inexact oracle for the field operator is also considered.
作者简介
A. Gasnikov
Moscow Institute of Physics and Technology; State University—Higher School of Economics; Kharkevich Institute for Information Transmission Problems
编辑信件的主要联系方式.
Email: gasnikov@yandex.ru
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125319; Moscow, 127051
P. Dvurechensky
Kharkevich Institute for Information Transmission Problems; Weierstrass Institute for Applied Analysis and Stochastics
编辑信件的主要联系方式.
Email: pavel.dvurechensky@gmail.com
俄罗斯联邦, Moscow, 127051; Berlin, 10117
F. Stonyakin
Crimea Federal University; Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: fedyor@mail.ru
俄罗斯联邦, Simferopol, 295007; Dolgoprudnyi, Moscow oblast, 141700
A. Titov
Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: a.a.titov@phystech.edu
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700
补充文件
