Analytical Solutions of the Internal Gravity Wave Equation for a Semi-Infinite Stratified Layer of Variable Buoyancy
- Авторы: Bulatov V.V.1, Vladimirov Y.V.1
-
Учреждения:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Выпуск: Том 59, № 5 (2019)
- Страницы: 747-750
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180560
- DOI: https://doi.org/10.1134/S0965542519050051
- ID: 180560
Цитировать
Аннотация
The problem of constructing asymptotics describing far-field internal gravity waves generated by an oscillating point source of perturbations moving in a vertically semi-infinite stratified layer of variable buoyancy is considered. For a model distribution of the buoyancy frequency, analytical solutions of the main boundary value problem are obtained, which are expressed in terms of Whittaker functions. An integral representation for the Green’s function is obtained, and asymptotic solutions are constructed that describe the amplitude-phase characteristics of internal gravity wave fields in a semi-infinite stratified medium with a variable buoyancy frequency far away from the perturbation source.
Ключевые слова
Об авторах
V. Bulatov
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: internalwave@mail.ru
Россия, Moscow, 119526
Yu. Vladimirov
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: vladimyura@yandex.ru
Россия, Moscow, 119526
Дополнительные файлы
