A Class of Momentum-Preserving Finite Difference Schemes for the Korteweg-de Vries Equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To preserve some invariant properties of the original differential equation is an important criterion to judge the success of a numerical simulation. In this paper, we construct, analyze and numerically validate a class of momentum-preserving finite difference methods for the Korteweg-de Vries equation. The proposed schemes can conserve the discrete momentum to machine precision. Numerical experiments reveal that the phase and amplitude errors, after long time simulation, are well controlled due to the momentum-preserving property. Besides, the numerical results show that the numerical errors grow only linearly as a function of time.

Sobre autores

Jin-Liang Yan

Department of Mathematics and Computer, Wuyi University; Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University

Autor responsável pela correspondência
Email: yanjinliang3333@163.com
República Popular da China, Wu Yi Shan, 354300; Jiangsu, 210023

Liang-Hong Zheng

Department of Information and Computer Technology, No.1 middle school of Nanping

Email: yanjinliang3333@163.com
República Popular da China, Fujian, 353000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019