Estimation of the Distance between True and Numerical Solutions
- Autores: Alekseev A.K.1, Bondarev A.E.2
-
Afiliações:
- Moscow Institute of Physics and Technology
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
- Edição: Volume 59, Nº 6 (2019)
- Páginas: 857-863
- Seção: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180608
- DOI: https://doi.org/10.1134/S0965542519060034
- ID: 180608
Citar
Resumo
Given an ensemble of numerical solutions generated by different algorithms that are guaranteed to have different errors, the triangle inequality is used to find a neighborhood of a numerical solution that contains the true one. By analyzing the distances between the numerical solutions, the latter can be ranged according to their error magnitudes. Numerical tests for the two-dimensional compressible Euler equations demonstrate the possibility of comparing the errors of different methods and determining a domain containing the true solution.
Palavras-chave
Sobre autores
A. Alekseev
Moscow Institute of Physics and Technology
Autor responsável pela correspondência
Email: alekseev.ak@phystech.edu
Rússia, Dolgoprudnyi, Moscow oblast, 141700
A. Bondarev
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bond@keldysh.ru
Rússia, Moscow, 125047
Arquivos suplementares
