Traveling-Wave Solutions of the Kolmogorov–Petrovskii–Piskunov Equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov–Petrovskii–Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction–diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.

Sobre autores

S. Pikulin

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”

Autor responsável pela correspondência
Email: spikulin@gmail.com
Rússia, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018