Solution of Ill-Posed Nonconvex Optimization Problems with Accuracy Proportional to the Error in Input Data


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed that ensure an accuracy estimate proportional or close to the error in the input data. The procedures are generated by the classical Tikhonov scheme and a gradient projection technique. A necessary condition for the existence of procedures regularizing the class of optimization problems with a uniform accuracy estimate in the class is established.

Sobre autores

M. Kokurin

Mari State University

Autor responsável pela correspondência
Email: kokurinm@yandex.ru
Rússia, Yoshkar-Ola, 424001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018