Factorial Transformation for Some Classical Combinatorial Sequences


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Factorial transformation known from Euler’s time is a very powerful tool for summation of divergent power series. We use factorial series for summation of ordinary power generating functions for some classical combinatorial sequences. These sequences increase very rapidly, so OGFs for them diverge and mostly unknown in a closed form. We demonstrate that factorial series for them are summable and expressed in known functions. We consider among others Stirling, Bernoulli, Bell, Euler and Tangent numbers. We compare factorial transformation with other summation techniques such as Padé approximations, transformation to continued fractions, and Borel integral summation. This allowed us to derive some new identities for GFs and express their integral representations in a closed form.

Sobre autores

V. Varin

Keldysh Institute of Applied Mathematics RAS

Autor responsável pela correspondência
Email: varin@keldysh.ru
Rússia, Moscow, 125047

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018