Asymptotics of the Solution of a Differential Equation in a Saddle–Node Bifurcation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A second-order semilinear differential equation with slowly varying parameters is considered. With frozen parameters, the corresponding autonomous equation has fixed points: a saddle point and stable nodes. Upon deformation of the parameters, the saddle–node pair merges. An asymptotic solution near such a dynamic bifurcation is constructed. It is found that, in a narrow transition layer, the principal terms of the asymptotics are described by the Riccati and Kolmogorov–Petrovsky–Piskunov equations. An important result is finding the dragging out of the stability: the moment of disruption significantly shifts from the moment of bifurcation. The exact assertions are illustrated by the results of numerical experiments.

Авторлар туралы

L. Kalyakin

Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: klenru@mail.ru
Ресей, Ufa, 450008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019