Optimization of the Number and Arrangement of Circles of Two Radii for Forming a k-Covering of a Bounded Set
- Авторы: Galiev S.I.1, Khorkov A.V.1
-
Учреждения:
- Tupolev Kazan National Research Technical University
- Выпуск: Том 59, № 4 (2019)
- Страницы: 676-687
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180543
- DOI: https://doi.org/10.1134/S0965542519040031
- ID: 180543
Цитировать
Аннотация
A numerical method for investigating k-coverings of a convex bounded closed set with nonempty interior with circles of two given radii is proposed. An algorithm for finding an approximate number of such circles and the arrangement of their centers is described. For certain specific cases, approximate lower bounds of the density of the k-covering of the given domain are found. Cases with constraints on the distances between the covering circle centers and problems with a variable (given) covering multiplicity are also considered. Numerical results demonstrating the effectiveness of the proposed methods are presented.
Об авторах
Sh. Galiev
Tupolev Kazan National Research Technical University
Автор, ответственный за переписку.
Email: sh.galiev@mail.ru
Россия, Kazan, 420111
A. Khorkov
Tupolev Kazan National Research Technical University
Автор, ответственный за переписку.
Email: alex22fcrk@yandex.ru
Россия, Kazan, 420111
Дополнительные файлы
