Tensor Trains Approximation Estimates in the Chebyshev Norm
- Авторлар: Osinsky A.I.1
-
Мекемелер:
- Institute of Numerical Mathematics, Russian Academy of Sciences
- Шығарылым: Том 59, № 2 (2019)
- Беттер: 201-206
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180387
- DOI: https://doi.org/10.1134/S096554251902012X
- ID: 180387
Дәйексөз келтіру
Аннотация
A new elementwise bound on the cross approximation error used for approximating multi-index arrays (tensors) in the format of a tensor train is obtained. The new bound is the first known error bound that differs from the best bound by a factor that depends only on the rank of the approximation \(r\) and on the dimensionality of the tensor \(d\), and the dependence on the dimensionality at a fixed rank has only the order \({{d}^{{{\text{const}}}}}\) rather than constd. Thus, this bound justifies the use of the cross method even for high dimensional tensors.
Негізгі сөздер
Авторлар туралы
A. Osinsky
Institute of Numerical Mathematics, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: o@list.ru
Ресей, Moscow, 119333
Қосымша файлдар
