Compacton Solutions of the Korteweg–de Vries Equation with Constrained Nonlinear Dispersion


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The numerical solution of initial value problems is used to obtain compacton and kovaton solutions of K(m, g n) equations generalizing the Korteweg–de Vries K(u2, u1) and Rosenau–Hyman K(u m, u n) equations to more general dependences of the nonlinear and dispersion terms on the solution u. The functions f(u) and g(u) determining their form can be linear or can have the form of a smoothed step. It is shown that peakocompacton and peakosoliton solutions exist depending on the form of the nonlinearity and dispersion. They represent transient forms combining the properties of solitons, compactons, and peakons. It is shown that these solutions can exist against an inhomogeneous and nonstationary background.

作者简介

S. Popov

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”
Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sppopov@yandex.ru
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019