Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge–Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

Авторлар туралы

A. Assanova

Institute of Mathematics and Mathematical Modeling

Хат алмасуға жауапты Автор.
Email: assanova@math.kz
Қазақстан, Almaty, 050010

A. Imanchiyev

Aktobe Regional State University

Email: assanova@math.kz
Қазақстан, Aktobe, 030000

Zh. Kadirbayeva

Institute of Mathematics and Mathematical Modeling

Email: assanova@math.kz
Қазақстан, Almaty, 050010

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018