Grid-Characteristic Method on Tetrahedral Unstructured Meshes with Large Topological Inhomogeneities


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A key difficulty faced when grid-characteristic methods on tetrahedral meshes are used to compute structures of complex geometry is the high computational cost of the problem. Formally, grid-characteristic methods can be used on any tetrahedral mesh. However, a direct generalization of these methods to tetrahedral meshes leads to a time step constraint similar to the Courant step for uniform rectangular grids. For computational domains of complex geometry, meshes nearly always contain very small or very flat tetrahedra. From a practical point of view, this leads to unreasonably small time steps (1–3 orders of magnitude smaller than actual structures) and, accordingly, to unreasonable growth of the amount of computations. In their classical works, A.S. Kholodov and K.M. Magomedov proposed a technique for designing grid-characteristic methods on unstructured meshes with the use of skewed stencils. Below, this technique is used to construct a numerical method that performs efficiently on tetrahedral meshes.

Авторлар туралы

A. Vasyukov

Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: a.vasyukov@phystech.edu
Ресей, Dolgoprudnyi, Moscow oblast, 141700

I. Petrov

Moscow Institute of Physics and Technology (State University)

Email: a.vasyukov@phystech.edu
Ресей, Dolgoprudnyi, Moscow oblast, 141700

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018