Testing of Adaptive Symplectic Conservative Numerical Methods for Solving the Kepler Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The properties of a family of new adaptive symplectic conservative numerical methods for solving the Kepler problem are examined. It is shown that the methods preserve all first integrals of the problem and the orbit of motion to high accuracy in real arithmetic. The time dependences of the phase variables have the second, fourth, or sixth order of accuracy. The order depends on the chosen values of the free parameters of the family. The step size in the methods is calculated automatically depending on the properties of the solution. The methods are effective as applied to the computation of elongated orbits with an eccentricity close to unity.

Авторлар туралы

G. Elenin

Faculty of Computational Mathematics and Cybernetics, Moscow State University; Scientific Research Institute for System Analysis, Federal Research Center,
Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: elenin2@rambler.ru
Ресей, Moscow, 119991; Moscow, 117218

T. Elenina

Faculty of Physics, Moscow State University

Хат алмасуға жауапты Автор.
Email: t.yelenina@gmail.com
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018