Approximation algorithm for the problem of partitioning a sequence into clusters


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the problem of partitioning a finite sequence of Euclidean points into a given number of clusters (subsequences) using the criterion of the minimal sum (over all clusters) of intercluster sums of squared distances from the elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is at the origin, while the center of each of the other clusters is unknown and determined as the mean value over all elements in this cluster. Additionally, the partition obeys two structural constraints on the indices of sequence elements contained in the clusters with unknown centers: (1) the concatenation of the indices of elements in these clusters is an increasing sequence, and (2) the difference between an index and the preceding one is bounded above and below by prescribed constants. It is shown that this problem is strongly NP-hard. A 2-approximation algorithm is constructed that is polynomial-time for a fixed number of clusters.

Авторлар туралы

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

L. Mikhailova

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090

S. Khamidullin

Sobolev Institute of Mathematics, Siberian Branch

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090

V. Khandeev

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017