Approximation algorithm for the problem of partitioning a sequence into clusters
- Авторлар: Kel’manov A.V.1,2, Mikhailova L.V.1, Khamidullin S.A.1, Khandeev V.I.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Шығарылым: Том 57, № 8 (2017)
- Беттер: 1376-1383
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179345
- DOI: https://doi.org/10.1134/S0965542517080085
- ID: 179345
Дәйексөз келтіру
Аннотация
We consider the problem of partitioning a finite sequence of Euclidean points into a given number of clusters (subsequences) using the criterion of the minimal sum (over all clusters) of intercluster sums of squared distances from the elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is at the origin, while the center of each of the other clusters is unknown and determined as the mean value over all elements in this cluster. Additionally, the partition obeys two structural constraints on the indices of sequence elements contained in the clusters with unknown centers: (1) the concatenation of the indices of elements in these clusters is an increasing sequence, and (2) the difference between an index and the preceding one is bounded above and below by prescribed constants. It is shown that this problem is strongly NP-hard. A 2-approximation algorithm is constructed that is polynomial-time for a fixed number of clusters.
Авторлар туралы
A. Kel’manov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
L. Mikhailova
Sobolev Institute of Mathematics, Siberian Branch
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090
S. Khamidullin
Sobolev Institute of Mathematics, Siberian Branch
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090
V. Khandeev
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: kelm@math.nsc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090
Қосымша файлдар
