Optimal Design of a Portable Arc-Shaped NMR Sensor and Its Application in the Aging-Level Detection of Silicone Rubber Insulator


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Silicone rubber insulators (SRIs) are widely used in power systems because of their excellent hydrophobicity, high mechanical strength, and light weight; however, detecting SRI degradation remains problematic. Many studies have focused on SRI detection, but reports on rod-sheath detection are limited. We designed a novel nuclear magnetic resonance sensor that could be used to detect the sheath of arc-shaped SRI rods. First, the magnetic structure that generates the main magnetic field (B0) was designed and optimized, and B0 was designed purposely for an arc-shaped distribution that can match the sheath of SRI rod well. Second, an arc-shaped spiral radio-frequency coil was designed and optimized. Third, three SRIs serving on a 220-kV power transmission line for different time points were measured using this sensor. The transverse-relaxation decay curves were obtained using the Carr–Purcell–Meiboom–Gill (CPMG) sequence. Inverse Laplace transformation was then used to obtain the T2 distribution from the CPMG decay curves. T2 distribution demonstrated that the long component of T2 decreased with increased serving time. Therefore, the T2,long mean obtained from the T2 distribution can be used as an index to reflect the aging level of the sheath of SRI rod.

Об авторах

Xu Zheng

State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University

Автор, ответственный за переписку.
Email: pinexz@163.com
Китай, Chongqing, 400044

Ye Qiang

State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University

Email: pinexz@163.com
Китай, Chongqing, 400044

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag Wien, 2015

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).