Accelerating Parallel Magnetic Resonance Imaging Using p-Thresholding Based Compressed-Sensing


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Conjugate gradient-based SENSE (CG-SENSE) and compressed-sensing (CS) are well-established techniques to accelerate magnetic resonance imaging (MRI) data acquisition. CG-SENSE is an iterative parallel MRI (pMRI) technique, used for the reconstruction of unaliased MR images from the under-sampled arbitrary k-space trajectories (Cartesian and non-Cartesian). Whereas CS is a promising technique that requires fewer random samples in the k-space to speed up the data acquisition process for MR image reconstruction. In the recent past, further acceleration in MR data acquisitions has been achieved using pMRI and CS jointly. In this paper, a novel method is proposed which sequentially combines CG-SENSE with p-thresholding based CS to achieve higher acceleration factors without compromising the quality of image reconstruction. In the proposed method, CG-SENSE and p-thresholding based CS reconstructions are sequentially combined to recover aliased free images from highly under-sampled k-space data. The performance of the proposed method is evaluated for arbitrary k-space Cartesian and radial trajectories. The reconstruction results are compared with conventional methods, e.g., CG-SENSE and \(\ell_{1}\)-SPIR-iT. Several experiments are performed using simulated phantom and in vivo datasets. The reconstruction quality of the proposed method is evaluated in terms of artifact power (AP), peak signal-to-noise ratio (PSNR) and root mean square error (RMSE). The experimental results show that the proposed method outperforms the CG-SENSE and \(\ell_{1}\)-SPIR-iT by achieving superior image reconstruction quality.

Об авторах

Irfan Ullah

Department of Electrical Engineering, COMSATS University Islamabad

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Omair Inam

Department of Electrical Engineering, COMSATS University Islamabad

Автор, ответственный за переписку.
Email: omair_inam@comsats.edu.pk
ORCID iD: 0000-0003-0394-3533
Пакистан, Islamabad

Ibtisam Aslam

Department of Electrical Engineering, COMSATS University Islamabad

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Hammad Omer

Department of Electrical Engineering, COMSATS University Islamabad

Email: omair_inam@comsats.edu.pk
Пакистан, Islamabad

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).