An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT)


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The image quality of iterative self-consistent parallel imaging reconstruction (SPIRiT) algorithm highly depends on the accuracy of linear coefficients which can be easily influenced by k-space noise. In this study, an improved calibration framework for SPIRiT is presented to reduce noise-induced errors and to adaptively generate optimal linear weighting coefficients. Specifically, the auto-calibration signals (ACS) are first mapped to a high-dimensional feature space through a polynomial mapping, and the optimal coefficients are adaptively obtained in this new feature space with discrepancy-based Tikhonov regularization and then truncated for SPIRiT reconstruction. Phantom and in vivo brain reconstruction were, respectively, performed and this calibration framework was mainly evaluated in Cartesian k-space-based SPIRiT reconstruction. In both phantom and in vivo reconstructions, noise-induced errors can be reduced by polynomial mapping and optimal regularization parameter, which improves the accuracy of linear coefficients. Both qualitative and quantitative results demonstrated that the proposed calibration framework resulted in better image quality without loss of resolution compared with the conventional calibration at different acceleration factors. The proposed calibration framework can effectively improve SPIRiT image quality.

Об авторах

Zhenzhou Wu

Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Jianbing Zhu

Medical Imaging Department, Suzhou Hospital Affiliated to Nanjing Medical University; Medical Imaging Department, Suzhou Science and Technology Town Hospital

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215153; Suzhou, Jiangsu, 215153

Yan Chang

Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Yajie Xu

Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Xiaodong Yang

Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Автор, ответственный за переписку.
Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).