Multi-exponential Analysis of Water NMR Spin–Spin Relaxation in Porosity/Permeability-Controlled Sintered Glass
- 作者: Chencarek B.1, Nascimento M.S.1,2, Souza A.M.1, Sarthour R.S.1, Santos B.C.2, Correia M.D.2, Oliveira I.S.1
-
隶属关系:
- Centro Brasileiro de Pesquisas Físicas
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello-CENPES/PETROBRAS
- 期: 卷 50, 编号 1-3 (2019)
- 页面: 211-225
- 栏目: Original Paper
- URL: https://journals.rcsi.science/0937-9347/article/view/248197
- DOI: https://doi.org/10.1007/s00723-018-1050-x
- ID: 248197
如何引用文章
详细
Measuring time constants in multi-exponential decay phenomena is crucial in many areas of knowledge. However, besides the inherent difficulties to the mathematical structure of the problem analysis, noisy experimental data can make the task considerably difficult. One important example is nuclear magnetic resonance (NMR) logging data obtained from measurements of water and hydrocarbons in porous rocks from oil fields. To minimize the uncertainties, it is important to design experiments under controlled conditions. In this paper, we report a systematic study of high (500 MHz) and low (15 MHz)-field NMR \(T_2\) relaxation times performed on artificial sintered sand-glass samples saturated with water. Porosity and permeability were controlled by selecting the range of grains, and then applying a specific sintering temperature protocol to produce samples with different porous sizes, constant porosity, but varying permeability. The structure of porous was verified by microtomography and scanning electron microscopy techniques. Porosity and permeability were measured, respectively, by the free-gas expansion and steady-state methods. We analyze the NMR data using three different approaches: (1) Laplace inversion with optimized regularization based on measured noise level, (2) bi-exponential, and (3) q-exponential nonlinear least-squares. Upon a careful measurement protocol, we report that all methods yield essentially similar \(T_{2}\) distributions.
作者简介
B. Chencarek
Centro Brasileiro de Pesquisas Físicas
Email: ivan@cbpf.br
巴西, Rua Dr. Xavier Sigaud 150 Ed. Cesar Lattes, Urca, Rio de Janeiro, RJ, CEP 22290-180
M. Nascimento
Centro Brasileiro de Pesquisas Físicas; Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello-CENPES/PETROBRAS
Email: ivan@cbpf.br
巴西, Rua Dr. Xavier Sigaud 150 Ed. Cesar Lattes, Urca, Rio de Janeiro, RJ, CEP 22290-180; Av. Horácio Macedo, 950, Cidade Universitária, Rio de Janeiro, RJ, 21941-915
A. Souza
Centro Brasileiro de Pesquisas Físicas
Email: ivan@cbpf.br
巴西, Rua Dr. Xavier Sigaud 150 Ed. Cesar Lattes, Urca, Rio de Janeiro, RJ, CEP 22290-180
R. Sarthour
Centro Brasileiro de Pesquisas Físicas
Email: ivan@cbpf.br
巴西, Rua Dr. Xavier Sigaud 150 Ed. Cesar Lattes, Urca, Rio de Janeiro, RJ, CEP 22290-180
B. Santos
Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello-CENPES/PETROBRAS
Email: ivan@cbpf.br
巴西, Av. Horácio Macedo, 950, Cidade Universitária, Rio de Janeiro, RJ, 21941-915
M. Correia
Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello-CENPES/PETROBRAS
Email: ivan@cbpf.br
巴西, Av. Horácio Macedo, 950, Cidade Universitária, Rio de Janeiro, RJ, 21941-915
I. Oliveira
Centro Brasileiro de Pesquisas Físicas
编辑信件的主要联系方式.
Email: ivan@cbpf.br
巴西, Rua Dr. Xavier Sigaud 150 Ed. Cesar Lattes, Urca, Rio de Janeiro, RJ, CEP 22290-180
补充文件
