Fractal Approach for 1H-NMR Spectra Simplification and Data Processing


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Nuclear magnetic resonance (NMR) is a powerful instrumental technique suited to characterize and identify organic substances, and has been successfully applied in the analysis of complex matrices such as biological and environmental samples. In a previous work, we demonstrated the ability of unsupervised contribution analysis (UCA) to process complex mixtures to identify the number of independent constituents and deconvolute mixed signals into specific signal sources. In this work, we evaluated the deconvolving ability of this algorithm to access underlying spectral information—we used UCA to estimate the number of contributing species and respective contributing sources and scores and with that information performed selective 1H-NMR signal suppression. We found that, in optimal NMR conditions, independently of signal source type, UCA allows us to correctly (a) estimate the number of independent contributions, (b) retrieve specific signal sources and (c) respective mixing information, allowing us to (d) characterize each contribution using signal sources and (e) quantify each specific contribution by means of its mixing information. This unsupervised soft-modeling method allows (f) individual contribution estimation and (g) respective removal from collected spectra, thus (h) enhancing spectra information for minor contributing species.

Об авторах

Jorge Costa Pereira

CQC, Department of Chemistry, University of Coimbra

Автор, ответственный за переписку.
Email: jcpereira@qui.uc.pt
ORCID iD: 0000-0002-8633-3716
Португалия, Coimbra, 3004 535

Ivana Jarak

CICS-UBI, University of Beira Interior; Centre for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra

Email: jcpereira@qui.uc.pt
Португалия, Covilhã, 6201-506; Coimbra, 3000 456

Rui Carvalho

Centre for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra

Email: jcpereira@qui.uc.pt
Португалия, Coimbra, 3000 456; Coimbra, 3000 456

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).