Medical simulator for the training of radiologists: experimental work

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: Ankle injuries of various nature — bruises, sprains, tears, dislocations and subluxations, and fractures — account for 20–30% of all musculoskeletal system injuries. The most common ankle injuries are a tear and sprain. The difficulty in treating fractures in this location is due to the need for accurate repositioning of the articular surface and stable fixation of fragments. The actual task is to train roentgenologists in the field. The inclusion of medical personnel in the educational process at all levels of training simulation courses aids in the reduction of errors, reduction of problems, and the improvement of the quality of medical treatment provided to the public.

OBJECTIVE: This study aims to develop and create a simulator that simulates human bone structure and soft tissues and allows roentgenologists to get through training and instruction radiological examinations of an ankle joint and a foot.

MATERIALS AND METHODS: The following stages of the simulator’s development have been completed: acquiring ankle bone samples, creating a mold for casting, and constructing the simulator. The results of computer and magnetic resonance imaging were used to construct bone samples, from which a computerized 3D model of the bones of the foot and ankle joint was obtained. Using additive technologies, anatomically correct reproductions of human foot and ankle bones were made. At the next stage, a three-dimensional digital model was developed, and a mold for casting the finished product was made. Bone samples collected in a single structure were placed inside the mold. Next, a step-by-step filling of the form with a soft gel-like material was performed. In this case, a self-vulcanizing silicone rubber composition is selected, which, after solidification, imitates human soft tissues.

RESULTS: During the course of the study, a prototype medical simulator was created that models human bone structure and soft tissues and allows roentgenologists to practice performing ankle joint and foot roentgenography.

CONCLUSION: Because of its high anatomical accuracy, ease of use, and mass production potential, the developed simulator can be widely employed in the teaching of roentgenologists.

作者简介

Ilya Markin

Military Innovation Technopolis «ERA»

编辑信件的主要联系方式.
Email: ilya.markin.92@bk.ru
ORCID iD: 0000-0002-9334-910X
SPIN 代码: 6021-7645

Cand. Sci. (Tech.)

俄罗斯联邦, Anapa

Konstantin Alexandrov

Military Innovation Technopolis «ERA»

Email: aleksandrov.97@mail.ru

Corporal, Senior Operator of the 3rd Scientific Company

俄罗斯联邦, Anapa

Natalia Varlamova

Military Innovation Technopolis «ERA»

Email: varlamova@tpu.ru
ORCID iD: 0000-0002-6100-2427
SPIN 代码: 9139-6019

MD, Dr. Sci. (Tech.), Senior Researcher

俄罗斯联邦, Anapa

Petr Potapov

Military Innovation Technopolis «ERA»

Email: forwardspb@mail.ru
SPIN 代码: 5979-4490

MD, Cand. Sci. (Med.)

俄罗斯联邦, Anapa

Evgeniy Zhurbin

Military Innovation Technopolis «ERA»

Email: zhurbin-90@mail.ru
ORCID iD: 0000-0002-0867-3838
SPIN 代码: 8426-1354

MD, Cand. Sci. (Med.)

俄罗斯联邦, Anapa

Anton Matysin

Military Innovation Technopolis «ERA»

Email: an.matysin@gmail.com

Corporal, Senior Operator of the 3rd Scientific Company

俄罗斯联邦, Anapa

Aleksandr Shirshin

Kirov Military Medical Academy

Email: asmdot@gmail.com
ORCID iD: 0000-0002-1494-9626
SPIN 代码: 4412-0498

Post-Graduate Student, Radiologist

俄罗斯联邦, Saint Petersburg

Elena Shchelkanova

Military Innovation Technopolis «ERA»

Email: shchelkanova_el@mail.ru
ORCID iD: 0000-0003-0672-8820
SPIN 代码: 8396-0602

Cand. Sci. (Biol.)

俄罗斯联邦, Anapa

参考

  1. Kondratenko IV. Biomekhanicheskoe issledovanie sostoyaniya struktur stupni pri perelome naruzhnoj lodyzhki. Nauka nastoyashchego i budushchego. 2018;(1):418–421. (In Russ).
  2. Li Y, Guo R, Wang Y, Ma J, Miao X, Yang J, Zhang Z, Wu X, Ren T, Jiang D. Shoe-Integrated Sensor System for Diagnosis of the Concomitant Syndesmotic Injury in Chronic Lateral Ankle Instability: A Prospective Double-Blind Diagnostic Test. Nanomaterials (Basel). 2023;13(9):1539. doi: 10.3390/nano13091539
  3. Koh D, Chandrakumara D, Kon Kam King C. Incidence of Injuries Associated with Anterior Talofibular Ligament Injury Based on the Reporting of Magnetic Resonance Imaging. Cureus. 2023;15(7):e41738. doi: 10.7759/cureus.41738
  4. Zeng J, Xu C, Xu G, Wang D, et al. The Global Status of Research in Ankle Fracture: A Bibliometric and Visualized Study. Front Surg. 2022;14(9):853101. doi: 10.3389/fsurg.2022.853101
  5. Solod EI, Zagorodnij NV, Lazarev AF, i dr. Vozmozhnosti operativnogo lecheniya perelomov lodyzhek pri problemah kozhnyh pokrovov oblasti golenostopnogo sustava. Ural’skij medicinskij zhurnal. 2019;(12):96–101. (In Russ).
  6. Samohvalov IM, Borisov MB, Magomedov NB, Ganin EV. Opyt 3D-modelirovaniya v travmatologii i ortopedii. Klinicheskaya patofiziologiya. 2020;26(1):52–58. (In Russ).
  7. Karlova NA, Bojcova MG, Zorin YaP. Organizaciya samostoyatel’noj raboty ordinatorov po special’nosti «Rentgenologiya» s elementami simulyacionnogo obucheniya. Vizualizaciya v medicine. 2020;2(4):3–6. (In Russ).
  8. Vencerova NV, Potlov AYu, Tymchuk TM. Tkaneimitiruyushchie fantomy v medicine i biologii. V Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Virtual’noe modelirovanie, prototipirovanie i promyshlennyj dizajn»; 2018; Tambov. Available from: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fid%3D37068545 (In Russ).
  9. Soldatov YuP. Simulyatory sobstvennoj konstrukcii v obuchenii vrachej travmatologov-ortopedov. Virtual’nye tekhnologii v medicine. 2019;(2):63. (In Russ). doi: 10.46594/2687-0037_2019_2_63
  10. Kushnarev SV, Zheleznyak IS, Kravchuk VN, i dr. Primenenie 3D-modelej serdca, sozdannyh na osnove DICOM-izobrazhenij, v medicinskoj praktike. Luchevaya diagnostika i terapiya. 2020;11(3):7–13. (In Russ). doi: 10.22328/2079-5343-2020-11-3-7-13
  11. Ramos SMO, Thomas S, Berdeguez MBT, et al. Anthropomorphic phantoms-potential for more studies and training in radiology. Int J Radiol Radiat Ther. 2017;2(4):101–104. doi: 10.15406/ijrrt.2017.02.00033
  12. Bondarenko EV, Khoronko LYa. Simulation training as a leading direction in the development of medicine. Mir nauki. Pedagogika i psihologiya. 2022;10(3):1–7. (In Russ).
  13. X-Ray Phantom Foot, transparent [Internet] [cited 2023 February 19]. Available from: www.erler-zimmer.de/shop/en/9318?c=2241
  14. Gromov AI, Nizovcova LA, Petryajkin AV, i dr. Simulyacionnye moduli v obuchenii i kvalifikacionnoj ocenke vrachej i srednih medrabotnikov po special’nosti «Rentgenologiya». Virtual’nye tekhnologii v medicine. 2015;2(14):43–44. (In Russ).
  15. Paramonov TA, Markin IV, An VR, i dr. Medicinskij simulyator dlya podgotovki vrachej-travmatologov: eksperimental’naya rabota. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2022;29(3):279–288. (In Russ). doi: 10.17816/vto110979

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Medical X-ray phantom of the lower limb from Erler Zimmer.

下载 (67KB)
3. Fig. 2. Step-by-step pouring of silicone compound with installed wire ties.

下载 (230KB)
4. Fig. 3. Basic technological scheme of simulator manufacturing.

下载 (235KB)
5. Fig. 4. 3D substrate model for anatomically correct assembly of the foot bones.

下载 (72KB)
6. Fig. 5. Casting mould in the modelling phase.

下载 (43KB)
7. Fig. 6. Filling the mould with silicone compound.

下载 (156KB)
8. Fig. 7. An ankle simulator after casting mould removal.

下载 (51KB)
9. Fig. 8. Medical simulator radiographs of the left foot and ankle joint in straight and lateral projections.

下载 (92KB)

版权所有 © Eco-Vector, 2023

许可 URL: https://eco-vector.com/for_authors.php#07

##common.cookie##