Medical simulator for the training of radiologists: experimental work

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Ankle injuries of various nature — bruises, sprains, tears, dislocations and subluxations, and fractures — account for 20–30% of all musculoskeletal system injuries. The most common ankle injuries are a tear and sprain. The difficulty in treating fractures in this location is due to the need for accurate repositioning of the articular surface and stable fixation of fragments. The actual task is to train roentgenologists in the field. The inclusion of medical personnel in the educational process at all levels of training simulation courses aids in the reduction of errors, reduction of problems, and the improvement of the quality of medical treatment provided to the public.

OBJECTIVE: This study aims to develop and create a simulator that simulates human bone structure and soft tissues and allows roentgenologists to get through training and instruction radiological examinations of an ankle joint and a foot.

MATERIALS AND METHODS: The following stages of the simulator’s development have been completed: acquiring ankle bone samples, creating a mold for casting, and constructing the simulator. The results of computer and magnetic resonance imaging were used to construct bone samples, from which a computerized 3D model of the bones of the foot and ankle joint was obtained. Using additive technologies, anatomically correct reproductions of human foot and ankle bones were made. At the next stage, a three-dimensional digital model was developed, and a mold for casting the finished product was made. Bone samples collected in a single structure were placed inside the mold. Next, a step-by-step filling of the form with a soft gel-like material was performed. In this case, a self-vulcanizing silicone rubber composition is selected, which, after solidification, imitates human soft tissues.

RESULTS: During the course of the study, a prototype medical simulator was created that models human bone structure and soft tissues and allows roentgenologists to practice performing ankle joint and foot roentgenography.

CONCLUSION: Because of its high anatomical accuracy, ease of use, and mass production potential, the developed simulator can be widely employed in the teaching of roentgenologists.

About the authors

Ilya V. Markin

Military Innovation Technopolis «ERA»

Author for correspondence.
Email: ilya.markin.92@bk.ru
ORCID iD: 0000-0002-9334-910X
SPIN-code: 6021-7645

Cand. Sci. (Tech.)

Russian Federation, Anapa

Konstantin S. Alexandrov

Military Innovation Technopolis «ERA»

Email: aleksandrov.97@mail.ru

Corporal, Senior Operator of the 3rd Scientific Company

Russian Federation, Anapa

Natalia V. Varlamova

Military Innovation Technopolis «ERA»

Email: varlamova@tpu.ru
ORCID iD: 0000-0002-6100-2427
SPIN-code: 9139-6019

MD, Dr. Sci. (Tech.), Senior Researcher

Russian Federation, Anapa

Petr K. Potapov

Military Innovation Technopolis «ERA»

Email: forwardspb@mail.ru
SPIN-code: 5979-4490

MD, Cand. Sci. (Med.)

Russian Federation, Anapa

Evgeniy A. Zhurbin

Military Innovation Technopolis «ERA»

Email: zhurbin-90@mail.ru
ORCID iD: 0000-0002-0867-3838
SPIN-code: 8426-1354

MD, Cand. Sci. (Med.)

Russian Federation, Anapa

Anton N. Matysin

Military Innovation Technopolis «ERA»

Email: an.matysin@gmail.com

Corporal, Senior Operator of the 3rd Scientific Company

Russian Federation, Anapa

Aleksandr V. Shirshin

Kirov Military Medical Academy

Email: asmdot@gmail.com
ORCID iD: 0000-0002-1494-9626
SPIN-code: 4412-0498

Post-Graduate Student, Radiologist

Russian Federation, Saint Petersburg

Elena S. Shchelkanova

Military Innovation Technopolis «ERA»

Email: shchelkanova_el@mail.ru
ORCID iD: 0000-0003-0672-8820
SPIN-code: 8396-0602

Cand. Sci. (Biol.)

Russian Federation, Anapa

References

  1. Kondratenko IV. Biomekhanicheskoe issledovanie sostoyaniya struktur stupni pri perelome naruzhnoj lodyzhki. Nauka nastoyashchego i budushchego. 2018;(1):418–421. (In Russ).
  2. Li Y, Guo R, Wang Y, Ma J, Miao X, Yang J, Zhang Z, Wu X, Ren T, Jiang D. Shoe-Integrated Sensor System for Diagnosis of the Concomitant Syndesmotic Injury in Chronic Lateral Ankle Instability: A Prospective Double-Blind Diagnostic Test. Nanomaterials (Basel). 2023;13(9):1539. doi: 10.3390/nano13091539
  3. Koh D, Chandrakumara D, Kon Kam King C. Incidence of Injuries Associated with Anterior Talofibular Ligament Injury Based on the Reporting of Magnetic Resonance Imaging. Cureus. 2023;15(7):e41738. doi: 10.7759/cureus.41738
  4. Zeng J, Xu C, Xu G, Wang D, et al. The Global Status of Research in Ankle Fracture: A Bibliometric and Visualized Study. Front Surg. 2022;14(9):853101. doi: 10.3389/fsurg.2022.853101
  5. Solod EI, Zagorodnij NV, Lazarev AF, i dr. Vozmozhnosti operativnogo lecheniya perelomov lodyzhek pri problemah kozhnyh pokrovov oblasti golenostopnogo sustava. Ural’skij medicinskij zhurnal. 2019;(12):96–101. (In Russ).
  6. Samohvalov IM, Borisov MB, Magomedov NB, Ganin EV. Opyt 3D-modelirovaniya v travmatologii i ortopedii. Klinicheskaya patofiziologiya. 2020;26(1):52–58. (In Russ).
  7. Karlova NA, Bojcova MG, Zorin YaP. Organizaciya samostoyatel’noj raboty ordinatorov po special’nosti «Rentgenologiya» s elementami simulyacionnogo obucheniya. Vizualizaciya v medicine. 2020;2(4):3–6. (In Russ).
  8. Vencerova NV, Potlov AYu, Tymchuk TM. Tkaneimitiruyushchie fantomy v medicine i biologii. V Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Virtual’noe modelirovanie, prototipirovanie i promyshlennyj dizajn»; 2018; Tambov. Available from: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fid%3D37068545 (In Russ).
  9. Soldatov YuP. Simulyatory sobstvennoj konstrukcii v obuchenii vrachej travmatologov-ortopedov. Virtual’nye tekhnologii v medicine. 2019;(2):63. (In Russ). doi: 10.46594/2687-0037_2019_2_63
  10. Kushnarev SV, Zheleznyak IS, Kravchuk VN, i dr. Primenenie 3D-modelej serdca, sozdannyh na osnove DICOM-izobrazhenij, v medicinskoj praktike. Luchevaya diagnostika i terapiya. 2020;11(3):7–13. (In Russ). doi: 10.22328/2079-5343-2020-11-3-7-13
  11. Ramos SMO, Thomas S, Berdeguez MBT, et al. Anthropomorphic phantoms-potential for more studies and training in radiology. Int J Radiol Radiat Ther. 2017;2(4):101–104. doi: 10.15406/ijrrt.2017.02.00033
  12. Bondarenko EV, Khoronko LYa. Simulation training as a leading direction in the development of medicine. Mir nauki. Pedagogika i psihologiya. 2022;10(3):1–7. (In Russ).
  13. X-Ray Phantom Foot, transparent [Internet] [cited 2023 February 19]. Available from: www.erler-zimmer.de/shop/en/9318?c=2241
  14. Gromov AI, Nizovcova LA, Petryajkin AV, i dr. Simulyacionnye moduli v obuchenii i kvalifikacionnoj ocenke vrachej i srednih medrabotnikov po special’nosti «Rentgenologiya». Virtual’nye tekhnologii v medicine. 2015;2(14):43–44. (In Russ).
  15. Paramonov TA, Markin IV, An VR, i dr. Medicinskij simulyator dlya podgotovki vrachej-travmatologov: eksperimental’naya rabota. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2022;29(3):279–288. (In Russ). doi: 10.17816/vto110979

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Medical X-ray phantom of the lower limb from Erler Zimmer.

Download (67KB)
3. Fig. 2. Step-by-step pouring of silicone compound with installed wire ties.

Download (230KB)
4. Fig. 3. Basic technological scheme of simulator manufacturing.

Download (235KB)
5. Fig. 4. 3D substrate model for anatomically correct assembly of the foot bones.

Download (72KB)
6. Fig. 5. Casting mould in the modelling phase.

Download (43KB)
7. Fig. 6. Filling the mould with silicone compound.

Download (156KB)
8. Fig. 7. An ankle simulator after casting mould removal.

Download (51KB)
9. Fig. 8. Medical simulator radiographs of the left foot and ankle joint in straight and lateral projections.

Download (92KB)

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».