Трибохимический компонент развития окислительного стресса при имплантации искусственных суставов. Часть 5. Проокислительные свойства и взаимодействие с антиоксидантами частиц износа титановых и неметаллических ортопедических материалов


Цитировать

Полный текст

Аннотация

С помощью модельной реакции окисления кумола изучена радикалообразующая способность искусственных частиц износа титанового сплава ВТ6 и неметаллических материалов. Установлено, что частицы сплава инициируют образование радикалов, причем последовательное повторное окисление кумола металлическими частицами протекает с существенно большей скоростью формирования радикалов. Частицы неметаллических материалов (полиэтилен, корундовая керамика, углеродный нанокомпозит) инертны и не обладают радикалообразующей способностью, что обеспечивает их преимущество в плане предупреждения возможного развития у пациентов нежелательных свободнорадикальных реакций в окружающих имплантаты тканях.

Об авторах

Валерий Георгиевич Булгаков

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России, Москва, РФ

Email: testlabcito@mail.ru
канд. биол. наук, старший науч. сотр. ОЭТО ЦИТО; Тел.: 8 (495) 450-09-38. 127299, Москва, ул. Приорова, д. 10

В. Ф Татаринов

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России, Москва, РФ

канд. техн. наук, ген. директор ООО «ИнКар»

Н. С Гаврюшенко

ФГБУ «Центральный научно-исследовательский институт травматологии и ортопедии им. Н.Н. Приорова» Минздрава России, Москва, РФ

доктор техн. наук, профессор, рук. испытательной лаборатории ЦИТО

Список литературы

  1. Niki Y., Matsumoto H., Suda Y., Otani T., Fujikawa K., Toyama Y., Hisamori N., Nozue A. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials. 2003; 24 (8): 1447-57. 2. Soloviev A., Schwarz E.M., Darowish M., O’keefe R.J. Sphingomyelinase mediates macrophage activation by titanium particles independent of phagocytosis: A role for free radicals, NFkappaB, and TNFalpha. J. Orthop. Res. 2005; 23 (6): 1258-65.
  2. Булгаков В.Г., Ильина В.К., Гаврюшенко Н.С., Шальнев А.Н., Омельяненко Н.П., Цепалов В.Ф. Трибохимический компонент развития окислительного стресса при имплантации искусственных суставов. Часть
  3. Ингибирование радикалообразующей и антипролиферативной способности частиц износа антиоксидантами и костным жиром. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2012; 2: 56-60.
  4. Волков Г.М., Татаринов В.Ф. Биоинженерный потенциал углерода. Нанотехника. 2007; 10: 52-6.
  5. Zhang Q., Kusaka Y., Sato K., Nakakuki K., Kohyama N., Donaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J. Toxicol. Environ. Health. A. 1998; 53 ( 6): 423-38.
  6. Булгаков В.Г., Гаврюшенко Н.С., Цепалов В.Ф., Шальнев А.Н. Трибохимический компонент развития окислительного стресса при имплантации искусственных суставов. Часть 1.Определение радикалообразующей способности частиц износа различных ортопедических материалов. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2010; 1: 44-8.
  7. Татаринов В.Ф., Золкин П.И. Новые достижения в технологии получения углеситалла для искусственных клапанов сердца. Огнеупоры и техническая керамика. 1999; 3: 37-8.
  8. Феклисова Т.Г., Харитонова А.А., Пирогов О.Н., Цепалов В.Ф., Олейник Э.Ф. Некоторые особенности трибохимического окисления углеводородов. Трение и износ. 1985; 6 (2): 339-46.
  9. Cheng Y.J., Chien C.T., Chen C.F. Oxidative stress in bilateral total knee replacement, under ischaemic tourniquet. J. Bone Joint. Surg. Br. 2003; 85 (5): 679-82.
  10. Ozmen I., Naziroglu M., Okutan R. Comparative study of antioxidant enzymes in tissues surrounding implant in rabbits. Cell. Biochem. Funct. 2006; 24 (3): 275-81.
  11. Warashina H., Sakano S., Kitamura S., Yamauchi K.I., Yamaguchi J., Ishiguro N., Hasegawa Y. Biological reaction to alumina, zirconia, titanium and polyethylene particles implanted onto murine calvaria. Biomaterials. 2003; 24 (21): 3655-61.
  12. Al-Hajjar M., Jennings L.M., Begand S., Oberbach T., Delfosse D., Fisher J. Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. J. Biomed. Mater. Res. B. Appl. Biomater. 2013; 101 (8): 1456-62.
  13. Oral E., Ghali B.W., Muratoglu O.K. The elimination of free radicals in irradiated UHMWPEs with and without vitamin E stabilization by annealing under pressure. Biomed. Mater. Res. B. Appl. Biomater. 2011; 97 (1): 167-74.
  14. Fulin P., Pokorny D., Slouf M., Nevoralova M., Vackova T., Dybal J., Pilar J. Quantification of structural changes of UHMWPE components in total joint replacements. BMC Musculoskelet. Disord. 2014; 15: 109.
  15. Bladen C.L., Tzu-Yin L., Fisher J., Tipper J.L. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components. J. Biomed. Mater. Res. B. Appl. Biomater. 2013; 101 (3): 407-13.

© ООО "Эко-Вектор", 2015



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах