Treatment of horizontal dissection of the knee menisci with platelet-rich plasma (PRP). Literature review and analysis of own data

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Treatment of damage to the inner layer of the meniscus of the knee joint that does not extend to the articular surface remains an open question. Subsequently, these injuries can cause a complete rupture of the meniscus that already requires surgical treatment. Existing methods of treatment at this stage of meniscus injury have not shown their effectiveness.

AIM: Study the effect of platelet-rich plasma (PRP) on meniscus regeneration.

MATERIALS AND METHODS: The analysis of the 15 patients treatment results with the PRP method, which effectively stimulates regenerative processes, was carried out. The effectiveness of the method was assessed using the following evaluation scales: visual analog scale (VAS), Lequesne scale, WOMAC index (Western Ontario and McMaster Universities Osteoarthritis Index), Lysholm scale, KSS scale (Knee Society Score) and magnetic resonance imaging (MRI).

RESULTS: According to the results of MRI performed after 6 months, there was no progression of meniscus damage after PRP therapy by all parameters.

CONCLUSION: The study showed an improvement in all rating scales. In addition, according to MRI data, after 6 months there was no progression of the degenerative process in the menisci. The presented method can be the first step in the treatment of this pathology.

About the authors

Mikhail P. Lisitsyn

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: lissitsyn@rambler.ru
SPIN-code: 7162-0145

MD, PhD, Dr. Sci. (Med.), traumatologist-orthopedist

Russian Federation, Moscow

Ruslan Y. Atlukhanov

Hospital of the Tsentrosoyuz of the Russian Federation

Author for correspondence.
Email: ruslan.atl@mail.ru
ORCID iD: 0000-0003-3417-6744
SPIN-code: 6845-8768

MD, traumatologist-orthopedist

Russian Federation, Moscow

Adam M. Zaremuk

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Email: adamzaremuk@mail.ru
ORCID iD: 0000-0002-6630-9735
SPIN-code: 4169-3882

MD, PhD, Cand. Sci. (Med.), traumatologist-orthopedist

Russian Federation, Moscow

Ekaterina M. Lisitsyna

Guta Clinic

Email: lis10@yandex.ru
ORCID iD: 0000-0002-5184-2561
SPIN-code: 7268-0320

MD, traumatologist-orthopedist

Russian Federation, Moscow

References

  1. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30B:664–670.
  2. King D. The function of the semilunar cartilages. J Bone Joint Surg. 1936;18B:1069–1076.
  3. Gillquist J, Hamberg P, Lysholm J. Endoscopic partial and total meniscectomy. A comparative study with a short term follow up. Acta Orthop Scand. 1982;53(6):975–975. doi: 10.3109/17453678208992857
  4. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med. 1986;14(4):270–275. doi: 10.1177/036354658601400405
  5. Jaspers P, de Lange A, Huiskes R, van Rens TJ. The mechanical function of the meniscus, experiments on cadaveric pig knee-joints. Acta Orthop Belg. 1980;46(6):663–668.
  6. Milachowski KA, Weismeier K, Wirth CJ. Homologous meniscus transplantation. Experimental and clinical results. Int Orthop. 1989;13(1):1–11. doi: 10.1007/BF00266715
  7. Turman KA, Diduch DR. Meniscal repair: indications and techniques. J Knee Surg. 2008;21(2):154–162. doi: 10.1055/s-0030-1247812
  8. DeHaven KE. Meniscus repair. Am J Sports Med. 1999;27(2):242–250. doi: 10.1177/03635465990270022301
  9. Noyes FR, Barber-Westin SD. Repair of complex and avascular meniscal tears and meniscal transplantation. J Bone Joint Surg Am. 2010;92(4):1012–1029.
  10. Sutton JB. Ligaments: their nature and morphology. London: MK Lewis; 1897.
  11. Nawabi DH, Cro S, Hamid IP, Williams A. Return to play after lateral meniscectomy compared with medial meniscectomy in elite professional soccer players. Am J Sports Med. 2014;42(9):2191–2198. doi: 10.1177/0363546514540271
  12. Stein T, Mehling AP, Welsch F, et al. Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med. 2010;38(8):1542–1548. doi: 10.1177/0363546510364052
  13. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–7431. doi: 10.1016/j.biomaterials.2011.06.037
  14. McDermott ID, Amis AA. The consequences of meniscectomy. J Bone Joint Surg Br. 2006;88(12):1549–1556. doi: 10.1302/0301-620X.88B12.18140
  15. Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4(4):340–351. doi: 10.1177/1941738111429419
  16. Morgan CD, Wojtys EM, Casscells CD, Casscells SW. Arthroscopic meniscal repair evaluated by second-look arthroscopy. Am J Sports Med. 1991;19(6):632–637. doi: 10.1177/036354659101900614
  17. Salata MJ, Gibbs AE, Sekiya JK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. 2010;38(9):1907–1916. doi: 10.1177/0363546510370196
  18. Baker BE, Peckham AC, Pupparo F, Sanborn JC. Review of meniscal injury and associated sports. Am J Sports Med. 1985;13(1):1–4. doi: 10.1177/036354658501300101
  19. Hede A, Jensen DB, Blyme P, Sonne-Holm S. Epidemiology of meniscal lesions in the knee. 1,215 open operations in Copenhagen 1982-84. Acta Orthop Scand. 1990;61(5):435–437. doi: 10.3109/17453679008993557
  20. Steinbruck K. Epidemiology of sports injuries: 25-year-analysis of sports orthopedic-traumatologic ambulatory care. Sportverletz Sportschaden. 1999;13(2):38–52. (In German). doi: 10.1055/s-2007-993313
  21. Drosos GI, Pozo JL. The causes and mechanisms of meniscal injuries in the sporting and non-sporting environment in an unselected population. Knee. 2004;11(2):143–149. doi: 10.1016/S0968-0160(03)00105-4
  22. Kulyaba TA, Novoselov KA, Kornilov NN. Diagnostics and treatment of knee joint meniscus injuries. Travmatologiya i ortopediya Rossii. 2002;(1):81–87. (In Russ).
  23. Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M, Felson DT. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008;359:1108–1115.
  24. Noble J, Hamblen DL. The pathology of the degenerate meniscus lesion. J Bone Joint Surg Br. 1975;57(2):180–186.
  25. Gardner E, O’Rahilly R. The early development of the knee joint in staged human embryos. J Anat. 1968;102(Pt 2):289–299.
  26. Gray JC. Neural and vascular anatomy of the menisci of the human knee. J Orthop Sports Phys Ther. 1999;29(1):23–30. doi: 10.2519/jospt.1999.29.1.23
  27. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–547.
  28. Carney SL, Muir H. The structure and function of cartilage proteoglycans. Physiol Rev. 1988;68(3):858–910. doi: 10.1152/physrev.1988.68.3.858
  29. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–95. doi: 10.1177/036354658201000205
  30. Ghadially FN, Thomas I, Yong N, Lalonde JM. Ultrastructure of rabbit semilunar cartilages. J Anat.1978;125(Pt 3):499–517.
  31. McDermott ID, Sharifi F, Bull AM, et al. An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc. 2004;12(2):130–135. doi: 10.1007/s00167-003-0366-7
  32. Shaffer B, Kennedy S, Klimkiewicz J, Yao L. Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med. 2000;28(4):524–533. doi: 10.1177/03635465000280041301
  33. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–176. doi: 10.5435/00124635-200205000-00003
  34. Kusayama T, Harner CD, Carlin GJ, et al. Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc. 1994;2(4):234–237. doi: 10.1007/BF01845594
  35. Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193(Pt 2):161–178. doi: 10.1046/j.1469-7580.1998.19320161.x
  36. Villegas DF, Hansen TA, Liu DF, Donahue TL. A quantitative study of the microstructure and biochemistry of the medial meniscal horn attachments. Ann Biomed Eng. 2008;36(1):123–131. doi: 10.1007/s10439-007-9403-x
  37. Berlet GC, Fowler PJ. The anterior horn of the medical meniscus. An anatomic study of its insertion. Am J Sports Med. 1998;26(4):540–543. doi: 10.1177/03635465980260041201
  38. McKeon BP, Bono JV, Richmond JC. Knee arthroscopy. New York, NY: Springer Science and Business Media; 2009.
  39. Palastanga N, Soames R. Anatomy and human movement, structure and function. Philadelphia, PA: Elselvier Health Sciences; 2011.
  40. Rath E, Richmond JC. The menisci: basic science and advances in treatment. Br J Sports Med. 2000;34(4):252–257. doi: 10.1136/bjsm.34.4.252
  41. Last RJ. The popliteus muscle and the lateral meniscus. J Bone Joint Surg Br. 1950;32-B(1):93–99. doi: 10.1302/0301-620X.32B1.93
  42. Ghadially FN, Lalonde JM, Wedge JH. Ultrastructure of normal and torn menisci of the human knee joint. J Anat. 1983;136(Pt 4):773–791.
  43. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43(4):635–640. doi: 10.1136/ard.43.4.635
  44. Sweigart MA, Athanasiou KA. Toward tissue engineering of the knee meniscus. Tissue Eng. 2001;7(2):111–129. doi: 10.1089/107632701300062697
  45. Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 1987;16(4):343–356. doi: 10.3109/03008208709005619
  46. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br. 1970;52(3):564–567.
  47. Yasui K. Three dimensional architecture of human normal menisci. J Jpn Orthop Assoc. 1978;52(1):391–399.
  48. Aspden RM, Yarker YE, Hukins DW. Collagen orientations in the meniscus of the knee joint. J Anat. 1985;140(Pt 3):371–380.
  49. Beaupre A, Choukroun R, Guidouin R, et al. Knee menisci. Correlation between microstructure and biomechanics. Clin Orthop Relat Res. 1986;(208):72–75.
  50. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res. 1990;(252):19–31.
  51. Skaggs DL, Mow VC. Function of the radial tie fibers in the meniscus. Trans Orthop Res Soc. 1990;15:248.
  52. Rybalko DYu, Vagapova VSh, Borzilova OH. Peculiarities of histological tructure of knee joint menisci on the stages of postnatal ontogenesis. Meditsinskii vestnik Bashkortostana. 2015;10(1):99–102. (In Russ).
  53. Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl). 1998;197(4):317–324. doi: 10.1007/s004290050141
  54. Andrews SH, Rattner JB, Abusara Z, et al. Tie-fibre structure and organization in the knee menisci. J Anat. 2014;224(5):531–537. doi: 10.1111/joa.12170
  55. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5(2):157–161. doi: 10.1016/0141-5425(83)90036-5
  56. Pauli C, Grogan SP, Patil S, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage. 2011;19(9):1132–1141. doi: 10.1016/j.joca.2011.05.008
  57. Ghosh P, Taylor TK. The knee joint meniscus. A fibrocartilage of some distinction. Clin Orthop Relat Res. 1987;(224):52–63.
  58. Nakano T, Dodd CM, Scott PG. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J Orthop Res. 1997;15(2):213–220. doi: 10.1002/jor.1100150209
  59. Scott PG, Nakano T, Dodd CM. Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim Biophys Acta. 1997;1336(2):254–262. doi: 10.1016/s0304-4165(97)00040-8
  60. Adams ME, Muir H. The glycosaminoglycans of canine menisci. Biochem J. 1981;197(2):385–389. doi: 10.1042/bj1970385
  61. McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;(252):8–18.
  62. Miller RR, McDevitt CA. Thrombospondin in ligament, meniscus and intervertebral disc. Biochim Biophys Acta. 1991;1115(1):85–98. doi: 10.1016/0304-4165(91)90015-9
  63. Nakata K, Shino K, Hamada M, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001;391 Suppl:S208–S218.
  64. Verdonk PC, Forsyth RG, Wang J, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage. 2005;13(7):548–560. doi: 10.1016/j.joca.2005.01.010
  65. Van der Bracht H, Verdonk R, Verbruggen G, et al. Cell based meniscus tissue engineering. In: Ashammakhi N, Reis RL, Chiellini E, editors. Topics in tissue engineering. Finland: Oulu University; 2007.
  66. Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985;1(1):58–62. doi: 10.1016/s0749-8063(85)80080-3
  67. Danzig L, Resnick D, Gonsalves M, Akeson WH. Blood supply to the normal and abnormal menisci of the human knee. Clin Orthop Relat Res. 1983;(172):271–276.
  68. Harner CD, Janaushek MA, Kanamori A, et al. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. 2000;28(2):144–151. doi: 10.1177/03635465000280020201
  69. Meyers E, Zhu W, Mow V. Viscoelastic properties of articular cartilage and meniscus. In: Nimni M, editor. Collagen: chemistry, biology and biotechnology. Boca Raton, FL: CRC; 1988.
  70. Gardner E. The innervation of the knee joint. Anat Rec. 1948;101(1):109–130. doi: 10.1002/ar.1091010111
  71. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–335. doi: 10.1177/036354658201000601
  72. Samsonova AV, Komissarova EN. Biomechanics of muscles: an educational and methodological guide. Ed by A.V. Samsonova. St. Petersburg; 2008. (In Russ).
  73. Zimny ML. Mechanoreceptors in articular tissues. Am J Anat. 1988;182(1):16–32. doi: 10.1002/aja.1001820103
  74. Wilson AS, Legg PG, McNeur JC. Studies on the innervation of the medial meniscus in the human knee joint. Anat Rec. 1969;165(4):485–491. doi: 10.1002/ar.1091650404
  75. Wein AM. Pain syndromes in neurological practice. 3rd edition, ed. corresponding member RAMS A.M. Wein. Moscow: MEDpress-inform; 2001:158.
  76. Gronblad M, Korkala O, Liesi P, Karaharju E. Innervation of synovial membrane and meniscus. Acta Orthop Scand. 1985;56(6):484–486. doi: 10.3109/17453678508993040
  77. Zimny ML, Albright DJ, Dabezies E. Mechanoreceptors in the human medial meniscus. Acta Anat (Basel). 1988;133(1):35–40. doi: 10.1159/000146611
  78. Assimakopoulos AP, Katonis PG, Agapitos MV, Exarchou EI. The innervation of the human meniscus. Clin Orthop Relat Res. 1992;(275):232–236.
  79. Mine T, Kimura M, Sakka A, Kawai S. Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch Orthop Trauma Surg. 2000;120(3–4):201–204. doi: 10.1007/s004020050044
  80. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;(109):184–192. doi: 10.1097/00003086-197506000-00027
  81. Seedhom BB. Loadbearing function of the menisci. Physiotherapy. 1976;62(7):223.
  82. Seedhom BB, Hargreaves DJ. Transmission of the load in the knee joint with special reference to the role in the menisci: part II. Experimental results, discussion and conclusion. Engineering in Medicine. 1979;8(4):220–228. doi: 10.1243/EMED_JOUR_1979_008_051_02
  83. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–879. doi: 10.3109/17453678008990887
  84. Arnoczky SP, Adams ME, DeHaven KE, et al. The meniscus. In: Woo SL, Buckwalter J, editors. Injury and repair of musculoskeletal soft tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1987.
  85. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am. 1976;58(5):599–604.
  86. Kurosawa H, Fukubayashi T, Nakajima H. Load–bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res. 1980;(149):283–290.
  87. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–264.
  88. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883–888.
  89. Levy IM, Torzilli PA, Gould JD, Warren RF. The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am. 1989;71(3):401–406.
  90. Shoemaker SC, Markolf KL. The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Joint Surg Am. 1986;68(1):71–79.
  91. Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee – the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am. 1976;58(5):583–594.
  92. Bird MD, Sweet MB. A system of canals in semilunar menisci. Ann Rheum Dis. 1987;46(9):670–673. doi: 10.1136/ard.46.9.670
  93. Renstrom P, Johnson RJ. Anatomy and biomechanics of the menisci. Clin Sports Med. 1990;9(3):523–538.
  94. MacConaill MA. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat. 1932;66(Pt 2):210–227.
  95. MacConaill MA. Studies in the mechanics of synovial joints. Ir J Med Sci. 1946;21:223–235.
  96. MacConaill MA. The movements of bones and joints 3. The synovial fluid and its assistants. J Bone Joint Surg. 1950;32-B(2):244–252. doi: 10.1302/0301-620X.32B2.244
  97. Jerosch J, Prymka M, Castro WH. Proprioception of knee joints with a lesion of the medial meniscus. Acta Orthop Belg. 1996;62(1):41–45.
  98. Saygi B, Yildirim Y, Berker N, et al. Evaluation of the neurosensory function of the medial meniscus in humans. Arthroscopy. 2005;21(12):1468–1472. doi: 10.1016/j.arthro.2005.09.006
  99. Akgun U, Kocaoglu B, Orhan EK, et al. Possible reflex pathway between medial meniscus and semimembranosus muscle: an experimental study in rabbits. Knee Surg Sports Traumatol Arthrosc. 2008;16(9):809–814. doi: 10.1007/s00167-008-0542-x
  100. Karahan M, Kocaoglu B, Cabukoglu C, et al. Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg. 2010;130(3):427–431. doi: 10.1007/s00402-009-1018-2
  101. Kettelkamp DB, Jacobs AW. Tibiofemoral contact area – determination and implications. J Bone Joint Surg Am. 1972;54(2):349–356.
  102. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(4):489–496. doi: 10.1016/j.joms.2003.12.003
  103. Ding C, Martel-Pelletier J, Pelletier JP. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross sectional study. J Rheumatol. 2007;34(4):776–784.
  104. Biedert RM. Treatment of intrasubstance meniscal lesions: a randomized prospective study of four different methods. Knee Surg Sports Traumatol Arthrosc. 2000;8(2):104–108. doi: 10.1007/s001670050195
  105. MacDonald PB. Arthroscopic partial meniscectomy was not more effective than physical therapy for meniscal tear and knee osteoarthritis. J Bone Joint Surg Am. 2013;95(22):2058. doi: 10.2106/JBJS.9522.ebo745
  106. Mishra A, Harmon K, Woodall J, Vieira A. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13(7):1185–1195. doi: 10.2174/138920112800624283
  107. Marx RE, Carlson ER, Eichstaedt RM. Platelet-rich plasma – growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–646. doi: 10.1016/s1079-2104(98)90029-4
  108. Agata H, Asahina I, Yamazaki Y, et al. Effective bone engineering with periosteum-derived cells. J Dental Res. 2007;86(1):79–83. doi: 10.1177/154405910708600113
  109. Even J, Eskander M, Kang J. Bone morphogenetic protein in spine surgery: current and future uses. J Am Acad Orthop Surg. 2012;20(9):547–552. doi: 10.5435/JAAOS-20-09-547
  110. Pereira RC, Scaranari M, Benelli R, et al. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng Part A. 2013;19(11–12):1476–1488. doi: 10.1089/ten.TEA.2012.0225
  111. Park SI, Lee HR, Kim S, et al. Time sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol Cell Biochem. 2012;361(1–2):9–17. doi: 10.1007/s11010-011-1081-1
  112. Yang SY, Ahn ST, Rhie JW, et al. Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass. Ann Plast Surg. 2000;44(4);405–411. doi: 10.1097/00000637-200044040-00009
  113. Spreafico A, Chellini F, Frediani B, et al. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem. 2009;108(5);1153–1165. doi: 10.1002/jcb.22344
  114. Gaissmaier C, Fritz J, Krackhardt T, et al. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials. 2005;26(14):1953–1960. doi: 10.1016/j.biomaterials.2004.06.031
  115. Sundman EA, Cole BJ, Karas V, et al. The anti-inflammatory and matrix restorative mechanisms of platelet rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35–41. doi: 10.1177/0363546513507766
  116. Anitua E, Sánchez M, Nurden AT, et al. Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology (Oxford). 2007;46(12):1769–1772. doi: 10.1093/rheumatology/kem234
  117. Yin Z, Yang X, Jiang Y, et al. Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: an in vitro study. J Biomater Appl. 2014;28(7):1039–1050. doi: 10.1177/0885328213492573
  118. Mifune Y, Matsumoto T, Takayama K, et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage. 2013;21(1):175–185. doi: 10.1016/j.joca.2012.09.018
  119. van Buul GM, Koevoet WL, Kops N, et al. Platelet–rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011;39(11):2362–2370. doi: 10.1177/0363546511419278
  120. Bendinelli P, Matteucci E, Dogliotti G, et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol. 2010;225(3):757–766. doi: 10.1002/jcp.22274
  121. Wu CC, Chen WH, Zao B, et al. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving proinflammatory cytokine-inhibited chondrogenesis. Biomaterials. 2011;32(25):5847–5854. doi: 10.1016/j.biomaterials.2011.05.002
  122. Lee HR, Park KM, Joung YK, et al. Platelet rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release. 2012;159(3):332–337. doi: 10.1016/j.jconrel.2012.02.008
  123. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature. 2012;490(7420):355–360. doi: 10.1038/nature11438
  124. Moussa M, Lajeunesse D, Hilal G, et al. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti–inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp Cell Res. 2017;352(1):146–156. doi: 10.1016/j.yexcr.2017.02.012
  125. García-Prat L, Martínez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37–42. doi: 10.1038/nature16187
  126. Khalimov EV, Saveliev SN, Khalimov AE, et al. Possibilities of using platelet-rich autoplasma in the treatment of osteoarthritis of the knee joint. N.N. Priorov Journal of Traumatology and Orthopedics. 2016;23(3):23–27. doi.10.17816/vto201623323-27

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Knee joint structure: 1 — anterior cruciate ligament; 2 — posterior cruciate ligament; 3 — articular cartilage; 4 — internal lateral ligament; 5 — external lateral ligament; 6 — medial meniscus; 7 — lateral meniscus; 8 — tibia; 9 — fibula; 10 — femur; 11 — patella

Download (177KB)
3. Fig. 2. Knee meniscus ligaments: 1 — posterior cruciate ligament; 2 — tribal collateral ligament; 3 — medial meniscus; 4 — anterior cruciate ligament; 5 — patellar ligament; 6 — transverse ligament of knee; 7 — posterior meniscofemoral ligament; 8 — tribiofibular joint, superior tribiofibular joint; 9 — fibular collateral ligament; 10 — head of fibula; 11 — lateral meniscus

Download (134KB)
4. Fig. 3. The histological structure of the meniscus: a — meniscus view from above (1 — white zone; 2 — red zone; 3 — border (red-white) zone; b — meniscus view in cross section (1 — vessels; 2 — parallel oriented fibers; 3 — radially oriented fibers; 4 — surface layer cells; 5 — chondrocyte-like cells; 6 — fibroblast-like cells

Download (169KB)
5. Fig. 4. The introduction of the needle into the meniscus under ultrasound control (the arrow indicates the needle)

Download (102KB)
6. Fig. 5. MRI of the patient before the platelet-rich plasma (PRP) procedure

Download (82KB)
7. Fig. 6. MRI of the patient 6 months after the platelet-rich plasma (PRP) procedure

Download (76KB)

Copyright (c) 2021 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies