Biologic Characteristics of Bone Substituting Tissue Engineering Construction Based on Calcium Phosphate Ceramics, Autologous Mesenchymal Stromal Cells and Fibrin Hydrogel


Cite item

Full Text

Abstract

Biological characteristics of bone substituting tissue engineering construction (TEC) that contained porous calcium phosphate ceramic granulate (CPC) of phase structure ((tricalcium phosphate (TCP)), fibrin hydrogel and autologous multipotent mesenchymal stromal cells (auto-MMSC) induced and non-induced to osteogenic differentiation were studied in vivo. The following characteristics of TEC were determined: ability to transfer within its structure the viable auto-MMSC with preservation of their regeneration potential; ability to osteogenesis only under conditions of orthotopic implantation; ability of induced to osteogenic differentiation auto-MMSC to participate in the reparative processes for not more than within 6 weeks after implantation; negative affect of fibrin hydrogel on the osteoinductive properties of CPC within TCP structure. It was shown that to provide osteogenesis in the implanted TEC not only the viable auto-MMSC but simultaneous presence of osteoinductive and osteoconductive factors was required. No bone formation in a critical bone defect and in ectopic implantation takes place without observance of these conditions.

About the authors

V. E Mamonov

National Research Center for Hematology, Moscow

Email: vasily-mamonov@yandex.ru
канд. мед. наук, зав. научно-клиническим отделением гематологической ортопедии ГНЦ; Тел.: +7 (903) 165-74-44 125167, Москва, Новый Зыковский пр., д. 4, ГНЦ

A. G Chemis

National Research Center for Hematology, Moscow

канд. мед. наук, старший науч. сотр. отделения гематологической ортопедии ГНЦ

V. S Komlev

Institute of Metallurgy and Material Science named after A.A. Baykov, Moscow

доктор техн. наук, вед. науч. сотр. лаборатории керамических композиционных материалов ИМЕТ РАН

A. L Berkovskiy

National Research Center for Hematology, Moscow

канд. биол. наук, зав. лабораторией фракционирования белков плазмы крови

E. M Golubev

National Research Center for Hematology, Moscow

зав. опытным производством глубокой переработки плазмы крови ГНЦ

N. V Proskurina

National Research Center for Hematology, Moscow

канд. биол. наук, старший науч. сотр. лаборатории физиологии кроветворения ГНЦ

N. V Sats

National Research Center for Hematology, Moscow

канд. биол. наук, старший науч. сотр. лаборатории физиологии и кроветворения ГНЦ

N. I Drize

National Research Center for Hematology, Moscow

доктор биол. наук, зав. лабораторией физиологии кроветворения ГНЦ.

References

  1. Goshima K., Nakase J., Xu Q., Matsumoto K., Tsuchiya H. Repair of segmental bone defects in rabbit tibia promoted by a complex of b-tricalcium phosphate and hepatocyte growth factor. J. Orthop. Sci. 2012; 17: 639-48.
  2. Mastrogiacomo M., Muraglia A., Komlev V., Peyrin F., Rustichelli F., Crovace A., Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod. Craniofacial. Res. 2005; 8: 277-84.
  3. Scott M.A., Levi B., Askarinam A., Nguyen A., Rackohn T., Ting K. et al. Brief review of models of ectopic bone formation. Stem Cells Dev. 2012; 21 (5): 655-67.
  4. Hench L.L., Polak J.M. Third-generation biomedical materials. Science. 2002; 295 (5557): 1014-7.
  5. Jiang B., Akar B., Waller T.M., Larson J.C., Appel A.A., Brey E.M. Design of a composite biomaterial system for tissue engineering applications. Acta Biomater. 2014; 10 (3): 1177-86.
  6. Shao X., Goh J.C., Hutmacher D.W., Lee E.H., Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Engineering. 2006; 12 (6): 1539-51.
  7. Wu H., Kang N., Wang Q., Dong P., Lv X., Cao Y., Xiao R. The dose-effect relationship between the seeding quantity of human marrow mesenchymal stem cells and in vivo tissue engineered bone yield. Cell Transplant. 2015; 24 (10): 1957-68. doi: 10.3727/096368914X685393.
  8. Breidenbach A.P., Dyment N.A., Lu Y., Rao M., Shearn J. T., Rowe D.W. et al. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs. Tissue Eng. Part A. 2015; 21 (3-4): 438-450.
  9. Carmagnola D., Berglundh T., Lindhe J. The effect of a fibrin glue on the integration of Bio-OssA with bone tissue. An experimental study in labrador dogs. J. Clin. Periodontol. 2002; 29: 377-83.
  10. Weinand C., Pomerantseva I., Neville C.M., Gupta R., Weinberg E., Madisch I. et al. Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone. 2006; 38 (4): 555-63.
  11. Dorozhkin S.V. Bioceramics of calcium orthophosphates. Biomaterials. 2010; 31 (7): 1465-85.
  12. Horowitz R.A., Mazor Z., Foitzik C. Beta-tricalcium phosphate as bone substitute material: properties and clinical applications. Titanium. 2009; 1 (2): 1-11.
  13. Meidler R., Raver-Shapira N., Bar L., Belyaev O., Nur I. Method for removing a lytic enzyme from a heterogeneous mixture. WO 2013001524 A1; 2011.
  14. Aizawa P., Winge S., Karlsson G. Large-scale preparation of thrombin from human plasma. Thromb. Res. 2008; 122 (4): 560-7.
  15. Jorquera N.J.I., Ristol D.P., Fernandez R.J., Brava C.I., Lopez G.R. Stable thrombin composition. EP 1649867 A1; 2004.
  16. Hanada S., Honda Y., Morisada Y., Miyake S., Matsumoto I. Process for producing thrombin. US 5945103 A; 1994.
  17. Barradas A.M.C., Yuan H., van Blitterswijk C.A., Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur. Cells Mater. 2011; 21: 407-49.
  18. Song G., Habibovic P., Bao C., Hua J., van Blitterswijk C.A., Yuan H. et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013; 34 (2013): 2167-76.

Copyright (c) 2015 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies